Pure and Applied Geophysics

, Volume 172, Issue 8, pp 2179–2193 | Cite as

Short-Term Surface Deformation on the Northern Hayward Fault, CA, and Nearby Landslides Using Polarimetric SAR Interferometry (PolInSAR)

  • Samira Alipour
  • Kristy F. Tiampo
  • Sergey V. Samsonov
  • Pablo J. González


In this study, we analyze 25 RADARSAT-2 images from ascending and descending geometries to study the creep rate on the Hayward fault and landslide motions near Berkeley, CA. We applied a coherence optimization technique from polarimetric synthetic aperture radar interferometry (PolInSAR) to increase the accuracy of the measurements. We resolve 3–5 mm/year of motion along the Hayward fault, in agreement with earlier creep estimates. We identify a potential motion on secondary fault, northeast and parallel to the Hayward fault, which is creeping at a lower rate of ~1.5 mm/year. In addition, we identify a number of landslides along the hills east of the fault that agree with earlier results from advanced interferometric synthetic aperture radar (SAR) analysis and field investigations. We investigate four particular slope instabilities, one of which was marked as moderately active, and three as highly active, by earlier field investigations. The resolved along-hill slope displacement is estimated at ~23 mm/year. Our results demonstrate that PolInSAR is an effective method to increase the interferometric coherence and provide improved resolution of deformation features associated with natural hazards.

Key words

Polarimetric SAR interferometry coherence optimization 


  1. Adam, N., Kampes, B. and Eineder, M. 2005. Development of a scientific permanent scatterer system: Modifications for mixed ERS/ENVISAT time series. European Space Agency Special Issue Publication, ESA SP-572, 457–465Google Scholar
  2. Alipour, S., Tiampo, K. F., Samsonov, S. and Gonzalez, P. J. 2013. Multibaseline PolInSAR using RADARSAT-2 Quad-pol Data: Improvement in Interferometric Phase Analysi., IEEE Geosci. Remote Sens. Lett., doi:10.1109/LGRS.2012.2237501
  3. Berardino, P., Fornaro, G., Lanari, R. and Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40, 11, 2375–2383Google Scholar
  4. Bürgmann, R., et al. 2000. Earthquake potential along the northern Hayward fault, California. Science, 289, 5482, 1178–1182Google Scholar
  5. Bürgmann, R., Fielding, E. and Sukhatme, J. 1998. Slip along the Hayward fault, California, estimated from space-based synthetic aperture radar Interferometry. Geology, 26, 559–562Google Scholar
  6. Bürgmann, R., Hilley, G., Ferretti, A. and Novali, F. 2006. Resolving vertical tectonics in the San Francisco Bay area from GPS and Permanent Scatterer InSAR analysis. Geology, 34, 221–224Google Scholar
  7. Cloude, S. R. and Papathanassiou, K. P. 1998. Polarimetric SAR Interferometry. IEEE Trans. Geosci. Remote Sens., 36, 5, 1551–1565Google Scholar
  8. Colin, E., Titin-Schnaider, C. and Tabbara, W. 2006. An interferometric coherence optimization method in radar polarimetry for high-resolution imagery. IEEE Trans. Geosci. Remote Sens., 44, 1, 167–175Google Scholar
  9. Evans, E. L., Loveless, J. P. and Meade, B. J. 2012. Geodetic constraints on San Francisco Bay Area fault slip rates and potential seismogenic asperities on the partially creeping Hayward fault. J. Geophys. Res.: Solid Earth, 117, doi:10.1029/2004JB003496
  10. Hilley, G. E., et al. 2004. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis. Science, 304, 5679, 1952–1955, doi:10.1126/science.1098821
  11. Lienkaemper, J. J, Borchardt, G. and Lisowski, M. 1991. Historic creep rate and potential for seismic slip along the Hayward fault, California. J. Geophys. Res., 96, B11, 18261–18283Google Scholar
  12. Lienkaemper, J. J., et al. 2012. Long-Term Creep Rates on the Hayward Fault: Evidence for Controls on the Size and Frequency of Large Earthquakes. Bull. Seismol. Soc. Am., 102, 31–41Google Scholar
  13. Lienkaemper, J. J. and Galehouse, J. S. 1997. Revised long-term creep rates on the Hayward fault, Alameda and Contra Costa counties, California. U. S. Geological Survey, Open File Rep. 97–690Google Scholar
  14. Lienkaemper, J. J. and Galehouse, J. S. 1998. New evidence doubles the seismic potential of the Hayward fault. Seis. Res. Letts., 69, 6, 519–523, doi:10.1785/gssrl.69.6.519
  15. Malservisi, R., Gans, C. and Furlong, K. P. 2003. Numerical modeling of strike-slip creeping faults and implications for the Hayward fault, California. Tectonophysics, 361, 1-2, 121–137Google Scholar
  16. Navarro-Sanchez, V. and Lopez-Sanchez, J. M. 2012. Improvement of Persistent-Scatterer Interferometry Performance by Means of a Polarimetric Optimization. IEEE Geosci. Remote Sens. Lett., 9, 4, 609–613Google Scholar
  17. Navarro-Sanchez, V., Lopez-Sanchez, J. M. and Vicente-Guijalba, F. 2010. A Contribution of Polarimetry to Satellite Differential SAR Interferometry: Increasing the Number of Pixel Candidates. IEEE Geosci. Remote Sens. Lett., 7, 2, 276–280Google Scholar
  18. Neumann, M., Ferro-Famil, L. and Reigber, A. 2008. Multibaseline polarimetric SAR interferometry coherence optimization. IEEE Trans. Geosci. Remote Sens., 5, 1, 93–97Google Scholar
  19. Okada, Y. 1992. Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018–1040Google Scholar
  20. Qong, M. 2005. Coherence Optimization Using the Polarization State Conformation in PolInSAR. IEEE Geosci. Remote Sen. Lett., 2, 3, 301–305Google Scholar
  21. Samsonov, S. and Tiampo, K. 2011. Polarization phase difference analysis for selection of persistent scatterers in SAR Interferometry. IEEE Geosci. Remote Sens. Lett., 8, 2, 331–335Google Scholar
  22. Savage, J. C. and Lisowski, M. 1993. Inferred depth of creep on the Hayward fault, central California. J. Geophys. Res., 98, B1, 787–793, doi:10.1029/92JB01871
  23. Schmidt, D. A., Bürgmann, R., Nadeau, R. M. and d’Alessio, M. 2005. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data. J. Geophys. Res., 110, B08406, doi:10.1029/2004JB003397
  24. Shirzaei, M and Bürgmann, R. 2013. Time-dependant model of creep on the Hayward Fault from joint inversion of 18 years of InSAR and surface creep data. J. Geophys. Res.: Solid Earth, 118, 1–14, doi:10.1002/jgrb.50149
  25. Simpson, R.W., Lienkaemper, J. J. and Galehouse, J. S. 2001. Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep. Geophys. Res. Lett., 28, 11, 2269–2272Google Scholar
  26. Tiampo, K. F., González, P. J. and Samsonov, S. 2013. New results for aseismic creep on the Hayward fault using polarization persistent scatterer InSAR. Earth planet. Sci Lett., doi:10.1016/j.epsl.2013.02.019
  27. USGS Earthquake Hazard Program (1999) http://pubs.usgs.gov/of/1997/of97-745/of97-745d.html. Accessed 05 Dec 2013
  28. Wessel, P. and Smith, W. H. F. 1998. New, improved version of Generic Mapping Tools released. EOS Trans. Am. Geophys. Union, 79, 579Google Scholar
  29. Williams, R. A., et al. 2005. Seismic reflection evidence for a northeast-dipping Hayward fault near Fremont, California: Implications for seismic hazard. J. Geophys. Res., 32, L13301, doi:10.1029/2005GL023113

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Samira Alipour
    • 1
  • Kristy F. Tiampo
    • 1
  • Sergey V. Samsonov
    • 1
    • 2
  • Pablo J. González
    • 1
  1. 1.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  2. 2.Canada Centre for Remote Sensing, Natural Resources CanadaOttawaCanada

Personalised recommendations