Pure and Applied Geophysics

, Volume 171, Issue 7, pp 1423–1443 | Cite as

Tsunami Mapping Related to Local Earthquakes on the French–Italian Riviera (Western Mediterranean)

  • Mansour IoualalenEmail author
  • Christophe Larroque
  • Oona Scotti
  • Camille Daubord


The Ligurian coast, located at the French–Italian border, is densely populated as well as a touristic area. It is also a location where earthquakes and underwater landslides are recurrent. The nature of the local tsunamigenesis is therefore a legitimate question, because no tsunami warning system can resolve tsunami arrival times of a few minutes, which is the case for the area. As far as the seismicity of the area is concerned, the frequent recurrent earthquakes are generally of moderate magnitude: most of them are lower than M w 5. However, the relatively large M w 6.9 earthquake (Larroque et al., in Geophys J Int, 2012. doi: 10.1111/j.1365-246X.2012.05498.x) that occurred on the February 23, 1887, offshore of Imperia (Italian Riviera) is quite emblematic. This unusual event for the region merits a complete study: the quantification of its rupture mechanism is essential (1) to understand the regional active deformation, but also (2) to evaluate its tsunamigenesis potential by deriving relevant rupture scenarios obtained from our knowledge of the event; for that purpose the event is extensively described here. The first point has been the subject of quite a few studies based on the seismotectonics of the area. The last documented approach has been completed by Larroque et al. (Geophys J Int, 2012. doi: 10.1111/j.1365-246X.2012.05498.x) who proposed a rupture scenario involving a reverse faulting along a north dipping fault and favoring a M w 6.9 magnitude. In the present paper (1) we study the accuracy of their solutions in relation to the computational grid spacing and the dispersive/nondispersive parameterization, (2) based on an uncertainty on the recorded wave amplitude of the Genoa tide gauge they used, we propose a M w 6.7 earthquake magnitude solution for the event (the kinematics is unchanged), co-existing with the M w 6.9, (3) we evaluate the tsunami coastal impact of the 1887 event, and (4) we test a range of possible ruptures that local faults may undergo in order to propose a synoptic mapping of the tsunami threat in the area. The spatial distribution of the maximum wave height (MWH) is provided with a tentative identification of the processes that are responsible for it. This latter issue is imperative in order to make our mapping as generic as possible in the framework of our deterministic approach (based on realistic scenarios and not on ensemble statistics). The predictions suggest that the wave impact is mostly local, considering the relatively moderate size of the rupture planes. Although the present-day seismicity in this region is moderate, stronger earthquakes (M > 6.5) have occurred in the past. The studied scenarios show that for such events specific localities along the French–Italian Riviera may experience very significant MWH related to the shallow focal depth tested for such scenarios. We may reasonably conclude that the tsunami threat is relatively significant and uniform at the Italian side of the Riviera (from Ventimiglia to Imperia), while it is more localized (sporadic) at the French side from Antibes to Menton with, however, higher local level of inundation, e.g., Nice city center.


Earthquake active fault tsunami Mediterranean Ligurian coast 



The MALISAR geophysical surveys were funded by the Commission Nationale Flotte et Engins (CNFE-IFREMER). This work was partly funded by the Agence Nationale de la Recherche through the ANR projects QSHA (“Quantitative Seismic Hazard Assessment”, and TSUMOD (ANR-05-CATT-016-02). Finally, the authors acknowledge with thanks the contribution of the anonymous reviewers who contributed to the improvement of the first draft manuscript.


  1. Alasset, P.-J., Hébert, H., Maouche, S., Calbini, V., and Meghraoui, M. (2006) (MThe tsunami induced by the 2003 Zemmouri earthquake M w = 6.9, Algeria): modeling and results. Geophys. J. Int., 166, 213–226.Google Scholar
  2. Ambraseys, N. N. (1962) Data for the investigation of seismic sea waves in the Eastern Mediterranean. Seismological Society of America Bulletin, 52, 895–913.Google Scholar
  3. Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P.C., Savoye, B., and Bourillet, J.F. (2000) Numerical modeling of a landslide-generated tsunami: the 1979 Nice event, Pure appl. Geophys., 157, 1707–1727.Google Scholar
  4. Baroux, E., Béthoux, N., and Bellier, O. (2001) Analyses of the stress field in the southeastern France from earthquake focal mechanisms. Geophys. J. Int., 145, 336–348.Google Scholar
  5. Béthoux, N., Fréchet, J., Guyoton, F., Thouvenot, F., Cattaneo, M., Eva, C., Nicolas, M., and Granet M. (1992) A closing Ligurian sea. Pure and Applied Geophysics, 139, 179–194.Google Scholar
  6. Béthoux, N., Tric, E., Chery, J., and Beslier, M.O. (2008) Why is the Ligurian basin (Mediterranean sea) seismogenic? Thermomechanical modeling of a reactivated passive margin. Tectonics, 27, TC5011. doi: 10.1029/2007TC002232.
  7. Bigot-Cormier, F., Sage, F., Sosson, M., Déverchère, J., Ferrandini, M., Guennoc, P., Popoff, M., and. Stéphan, J.F. (2004) Déformations pliocènes de la marge nord-Ligure (France) : Les conséquences d’un chevauchement crustal sud-alpin. Bulletin de la Société Géologique de France, 175(2), 197–211.Google Scholar
  8. Carobene, L., and Cevasco, A. (2011) A large scale lateral spreading, its genesis and Quaternary evolution in the coastal sector between Cogoleto and Varazze (Liguria–Italy). Geomorphology, 129, 398–411.Google Scholar
  9. Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B., and Chawla, A. (2000) Boussinesq modeling of wave transformation, breaking, and run-up. II: 2D. J. Waterw. Port Coastal Ocean Eng., 126(1), 48–56.Google Scholar
  10. Dan, G., Sultan, N., and Savoye, B. (2007) The 1979 Nice harbor catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modeling. Mar. Geol., 245, 40–64.Google Scholar
  11. Delouis, B., Vallée, M., Meghraoui, M., Calais, E. Maouche, S., Lammali, K., Mahsas,A., Briole, P., Benhamouda, F. and Yelles, K. (2004) Slip distribution of the 2003 Boumerdes–Zemmouri earthquake, Algeria, from teleseismic, GPS, and coastal uplift data. Geophys. Res. Lett., 31, L18607. doi: 10.1029/2004.GL020687.
  12. Denza F. (1887) Alcune notizie sul terremoto del 23 febbraio 1887. Torino.Google Scholar
  13. Doglioni, C., Gueguen, E., Sàbat, F., and Fernandez M. (1997) The western Mediterranean extensional basins and the alpine orogen. Terra Nova, 9, 109–112.Google Scholar
  14. Edel, J.B., Dubois, D., Marchant, R., Hernandez, J., and Cosca M., 2001. La rotation miocène inférieure du bloc corso-sarde; nouvelles contraintes paléomagnétiques sur la fin du mouvement. Bulletin de la Société Géologique de France, 172(3), 275–283.Google Scholar
  15. Eva, C. and Rabinovich, A.B. (1997) The February 23, 1887 tsunami recorded on the Ligurian coast, western Mediterranean. Geophys. Res. Letters, 24, 2211–2214.Google Scholar
  16. Eva, E., Solarino, S., and Spallarossa, D. (2001) Seismicity and crustal structure beneath the western Ligurian Sea derived from local earthquake tomography. Tectonophysics, 339, 495–510.Google Scholar
  17. Ferrari, G. (1991) The 1887 Ligurian earthquake: a detailed study from contemporary scientific observations. Tectonophysics, 193, 131–139.Google Scholar
  18. Foeken, J.P.T., Dunai, T.J., Bertotti, G., and Andriessen P.A.M. (2003) Late Miocene to present exhumation in the Ligurian Alps (southwest Alps) with evidence for accelerate denudation during the Messinian salinity crisis. Geology, 31, 797–800.Google Scholar
  19. Gattacceca, J., Deino, A., Rizzo, R., Jones, D.S., Henry, B., Beaudoin, B., and Valeboin F. (2007) Miocene rotation of Sardinia: new paleomagnetic and geochronological constraints and geodynamic implications. Earth and Planetary Science Letters, 258, 359–377.Google Scholar
  20. Gidon, M., and Pairis J.L. (1992) Relations entre le charriage de la Nappe de Digne et la structure de son autochtone dans la vallée du Bès (Alpes de Haute-Provence, France). Eclogae Geologicae Helveticae, 85/2, 327–359.Google Scholar
  21. Habib, P. (1994) Aspects géotechniques de l’accident du nouveau port de Nice. Revue Francaise de Géotechnique, 65, 2–15.Google Scholar
  22. Hanks, T. C., and Kanamori, H. (1979) A moment magnitude scale. Journal of Geophysical Research, 84(B5). doi:  10.1029/0JGREA0000840000B5002348000001. issn: 0148-0227.
  23. Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S.T., Kirby, J.T., and Watts, P. (2007) Modeling of the 26th December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research, Oceans, 112, C07024. doi: 10.1029/2006JC003850.
  24. Ioualalen, M., Migeon, S., and Sardou, O. (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. Geophys. J. Int., 181, 724–740. doi:  10.1111/j.1365-246X.2010.04572.x.
  25. Jolivet, L., Augier, R., Faccenna, C., Negro, F., Rimmele, G., Agard, P., Robin, C., Rossetti, F., and Crespo-Blanc A.C. (2008) Subduction, convergence et extension arrière-arc en Méditerranée. Bulletin de la Société Géologique de France, 179(6), 525–550. doi:  10.2113/gssgfbull.179.6.525.
  26. Kennedy, A. B., Chen, Q., Kirby, J. T., and Dalrymple, R. A. (2000) Boussinesq modeling of wave transformation, breaking, and run-up. I: 1D. J. Wtrwy, Port, Coast, and Oc. Engrg. ASCE, 126(1), 39–47.Google Scholar
  27. Labbé, M., Donnadieu, C., Daubord, C., and Hébert, H. (2012) Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): Comparison with coastal data. Journal of Geophysical Research, 117, F01008. doi: 10.1029/2011JF001964.
  28. Lambert, J., Moroni, A., and Stucchi, M. (1994) An intensity distribution for the 1564, Maritimes Alpes earthquake. In Materials of the CEC Project Review of Historical Seismicity in Europe (eds. Albini, P. & Moroni, A.) (CNR, Milan) vol. 2, 143–152.Google Scholar
  29. Lambert, J., and M. Terrier (2011) Historical tsunami database for France and its overseas territories. Nat. Hazard Earth. Syst. Sci., 11, 1037–1046.Google Scholar
  30. Larroque, C., Béthoux, N., Calais, E., Courboulex, F., Deschamps, A., Déverchère, J., Stéphan, J.F., Ritz, J.F., and Gilli E. (2001) Active and recent deformation at the Southern Alps-Ligurian basin junction. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 80, 255–272.Google Scholar
  31. Larroque, C., Delouis, B., Godel, B., and Nocquet J.M. (2009) Active deformation at the southwestern Alps – Ligurian basin junction (France-Italy boundary): Evidence for recent change from compression to extension in the Argentera massif. Tectonophysics, 467(1–4), 22–34, doi: 10.1016/j.tecto.2008.12.013.
  32. Larroque, C., Mercier de Lépinay, B., and Migeon, S. (2011) Morphotectonic and fault-earthquake relationships along the northern Ligurian margin (Western Mediterranean) based on high resolution multibeam bathymetry and multichannel seismic-reflection profiles. Marine Geophysical Researches, 32(1–2), 163–179. doi: 10.1007/s11001-010-9108-7.
  33. Larroque, C., Scotti, O., and Ioualalen, M. (2012) Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling. Geophys. J. Int. doi: 10.1111/j.1365-246X.2012.05498.x.
  34. Laurent, O, Stéphan, J.F., and Popoff M. (2000) Modalités de la structuration miocène de la branche sud de l’arc de Castellane (chaînes subalpines méridionales). Géologie de la France, 3, 33–65.Google Scholar
  35. Laurenti, A. (1998) Les tremblements de terre des Alpes-Maritimes. Serre Editeur, 174 pp.Google Scholar
  36. Leonard, M. (2010) Earthquake fault scaling:self-consistent relating of rupture length, width, average displacement, and moment release. Seismol. Soc. Am. Bull. 100, 5A, 1971–1988.Google Scholar
  37. MAREMOTI technical report (2012) WP1: tide gauges and sea level coastal observations of tsunami, deliverables D1.1 and D1.2, (ANR-08-RISKNAT-05).Google Scholar
  38. Migeon, S., Cattaneo, A., Hassoun, V., Larroque, C., Corradi, N., Fanucci, F., Dano, A., and Mercier de Lepinay, B. (2011) Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin (North-western Mediterranean): some insights into geohazard assessment. Marine Geophysical Researches. doi: 10.1007/s11001-011-9123-3.
  39. Mulder, T., Savoye, B., and Syvitsky (1997) Numerical modeling of a mid-sized gravity flow: the 1979 Nice turbidity current (dynamics, processes, sediment budget and seafloor impact). Sedimentology, 44, 395–326.Google Scholar
  40. Piper, D.J., and Savoye, B. (1993) Process of late quaternary turbidity current flow and deposition on the Var deep-sea fan, Northwest Mediterranean Sea. Sedimentology, 40, 557–582.Google Scholar
  41. Pelinovsky, E., Kharif C., Riabov I., and Francius, M. (2002) Modeling of tsunami propagation in the vicinity of the French coast of the Mediterranean. Natural Hazards, 25, 135–159.Google Scholar
  42. Pophet, N., Kaewbanjak, N., Asavanant, J., and Ioualalen M. (2011) High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Computers and Fluids, 40, 258–268.Google Scholar
  43. Réhault, J.P., Boillot, G., and Mauffret A. (1984) The western Mediterranean basin geological evolution. Marine Geology, 55, 447–477.Google Scholar
  44. Rollet, N., Déverchère, J., Beslier, M.O., Guennoc, P., Réhault, J.P., Sosson, M., and Truffert C. (2002) Back arc extension, tectonic inheritance and volcanism in the Ligurian sea, Western Mediterranean. Tectonics, 21. doi: 10.1029/2001TC900027.
  45. Sage, F., Beslier, M.O., Thinon, I., Larroque, C., Dessa, J.X., Migeon, S., Angelier, J., Guennoc, P., Schreiber, D., Michaud, F., Stéphan, J.F., and Sonnette, L. (2011) Structure and evolution of a passive margin in a compressive environment: example of the south-western Alps-Ligurian basin junction during the Cenozoic. Marine and Petroleum Geology, 28, 1263–1282. doi: 10.1016/j.marpetgeo.2011.03.012.
  46. Schindelé, F., Bossu, R., Alabrune, N., Arnoul, P., Duperray, P., Gailler, A., Guilbert, J., Hébert, H., Hernandez, B., Loevenbruck, A., and Roudil, P. (2012) The French Tsunami warning center for the Mediterranean and North-East Atlantic (CENtre d’ALerte aux Tsunamis, CENALT). Geophysical Research Abstracts, Vol. 14, EGU2012-10166.Google Scholar
  47. Sieberg, A. (1923) Geologische, Physikalische und Angewandte Erdbebenkunde. Edited by Gustav Fischer, Jena, 572 pp.Google Scholar
  48. Soloviev, S.L. (1990) Tsunamigenic zones in the Mediterranean Sea. Natural Hazard, 3, 183–202.Google Scholar
  49. Soloviev, S. L., Solovieva, O. N., Go, Ch. N., Kim, Kh. S., and Shchetnikov, N. A. (2000) Tsunamis in the Mediterranean Sea 2000 BC-2000 AD, Vol. 13, Advances in Natural and Technological Hazards Research, Kluwer, Dordrecht.Google Scholar
  50. Tinti, S., Maramai, A., and Graziani, L. (2004) The new catalogue of Italian tsunami. Natural Hazard, 33, 439–465.Google Scholar
  51. Vogt, J. (1992) Le “complexe” de la crise sismique nissarde de 1564. Quaternaire, 3, 125–127.Google Scholar
  52. Wei, G., and Kirby, J. T. (1995) A time-dependent numerical code for extended Boussinesq equations. J. Wtrwy Port Coast Oc. Engrg, 121, 251–261.Google Scholar
  53. Wei, G., Kirby, J. T., Grilli, S. T., and Subramanya, R. (1995) A fully nonlinear Boussinesq model for free surface waves. Part 1: Highly nonlinear unsteady waves. J. Fluid Mech., 294, 71–92.Google Scholar
  54. Wells, D. L., and Coppersmith, K. J. (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84(4), 974–1002.Google Scholar
  55. Westphal, M., Orsini, J., and Vellutini P. (1976) Le microcontinent corso-sarde, sa position initiale, données paléomagnétiques et raccords géologiques. Tectonophysics, 30, 41–57.Google Scholar
  56. Yelles, K., Lammali, K., Mahsas, A., Calais, E., and Briole, P. (2004) Co-seismic deformation of the May 21st, 2003, M w = 6.8 Boumerdes earthquake, Algeria, from GPS measurements. Geophys. Res. Lett., 31, L13610. doi: 10.1029/2004.GL019884.

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Mansour Ioualalen
    • 1
    Email author
  • Christophe Larroque
    • 2
  • Oona Scotti
    • 3
  • Camille Daubord
    • 4
  1. 1.Institut de Recherche Pour le Développement, IRDUMR Géoazur 6526, CNRS-IRD-UNS-OCAValbonneFrance
  2. 2.UMR Géoazur 6526, CNRS-IRD-UPMC-UNS-OCAValbonneFrance
  3. 3.Institut de Recherches et de Sûreté Nucléaire, BERSSINFontenay-aux-Roses CedexFrance
  4. 4.Service Hydrographique et Océanographique de la MarineBrestFrance

Personalised recommendations