Pure and Applied Geophysics

, Volume 170, Issue 12, pp 2231–2256 | Cite as

Resistivity Structure of the Central Indian Tectonic Zone (CITZ) from Multiple Magnetotelluric (MT) Profiles and Tectonic Implications

  • K. K. Abdul Azeez
  • Martyn J. Unsworth
  • Prasanta K. Patro
  • T. Harinarayana
  • R. S. Sastry
Article

Abstract

The Central Indian Tectonic Zone (CITZ) is a major tectonic feature extending across the Indian subcontinent. It was formed in the Paleoproterozoic when the Bastar Craton and the Bundelkhand Craton were sutured together. This region is recognized in the geological record as a persistent zone of weakness with many tectonothermal events occurring over geologic time. The weakness of this region may have caused the late Cretaceous/early Tertiary Deccan volcanism to have been localized in the CITZ. The zone is still tectonically active, as evidenced by sustained levels of seismic activity. This paper presents the first systematic investigation of the resistivity structure of the CITZ using multiple magnetotelluric (MT) transects. Two-dimensional (2D) resistivity models were generated for five north–south profiles that cross the CITZ and encompass an area of ~60,000 km2. The models were based on the joint inversion of transverse electric (TE), transverse magnetic (TM) and tipper (Hz) data. All the profiles showed a low resistive (10–80 Ωm) middle to lower crust beneath the CITZ with a crustal conductance of 300–800 S. The presence of an interconnected fluid phase and/or hydrous/metallic minerals appears to be the most likely explanation for the elevated conductivity that is observed beneath the CITZ. The presence of fluids is significant because it may indicate the cause of persistent weakness at crustal depths. A northward dip of both the crustal conductive layer and coincident seismic reflections favor a northward polarity of the subduction process associated with the formation of the CITZ.

Keywords

Central Indian Tectonic Zone resistivity magnetotellurics fluids subduction polarity 

References

  1. Acharyya, S. K., Roy, A. (2000), Tectonothermal history of the Central Indian Tectonic Zone and reactivation of major faults/shear zones, J. Geol. Soc. India 55, 239–256.Google Scholar
  2. Acharyya, S. K. (2003), The nature of Mesoproterozoic Central Indian Tectonic Zone with Exhumed and Reworked Older Granulites, Gondwana Research 6, 197–214.Google Scholar
  3. Archie, G. E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, American Institute of Mining: Metallurgical and Petroleum Engineers Transactions 146, 54–62.Google Scholar
  4. Bailey, R. C. (1990), Trapping of aqueous fluids in the deep crust, Geophysical Research Letters 17, 1129–1132.Google Scholar
  5. Bhattacharji, S., Chatterjee, N., Wampler, J. M., Nayak, P. N., Deshmukh, S. S. (1996), Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan flood Basalt volcanism ner the K/T boundary: Evidence from Mafic dyke swarms, The Journal of Geology 104, 379–398.Google Scholar
  6. Bostick, F.X. (1977), A simple and almost exact method of MT analysis, Workshop on Electrical Methods in Geothermal Exploration, U.S. Geological Survey, Contract No. 14080001-8-359.Google Scholar
  7. Brasse, H., Kapinos, G., Mutschard, L., Alvarado, G. E., Worzewski, T., Jegen, M. (2009), Deep electrical resistivity structure of northwestern Costa Rica, Geophysical Research Letters 36. doi:10.1029/2008GL036397.
  8. Brown, C. (1994), Tectonic interpretation of regional conductivity anomalies, Surveys in Geophysics 15, 123–157.Google Scholar
  9. Cox, S. F. (2002), Fluid flow in mid- to deep crustal shear systems: Experimental constraints, observations on exhumed high fluid flux shear systems, and implications for the seismogenic process, Earth Planet Space 54, 1121–1126.Google Scholar
  10. Dessai, A. G., Peinado, M., Gokarn, S. G., Downes, H. (2010), Structure of the deep crust beneath the Central Indian Tectonic Zone: An integration of geophysical and xenoliths data, Gondwana Research 17, 162–170.Google Scholar
  11. Duba, A., Heikamp, S., Meurer, W., Nover, G., Will, G. (1994), Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity, Nature 367, 59–61.Google Scholar
  12. Friedrichs, B. (2003), Mapros, Magnetotelluric Processing Software User Manual, Metronix, Germany.Google Scholar
  13. Frost, B. R., Fyfe, W.S., Tazaki, K., Chan, T. (1989), Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust, Nature 340, 134–136.Google Scholar
  14. Frost, B. R., Bucher, K. (1994), Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective, Tectonophysics 231, 293–309.Google Scholar
  15. Gahalaut, V. K., Rao, V. K., Tiwari, H. C. (2004), On the mechanism and source parameters of the deep crustal Jabalpur earthquake, India, of 1997 May 21: constraints from aftershocks and changes in static stress, Geophys. J. Int. 156, 345–351.Google Scholar
  16. Gokarn, S. G., Rao, C. K., Gupta, G., Singh, B. P., Yamashita, M. (2001), Deep crustal structure in central India using magnetotelluric studies, Geophys. J. Int. 144, 685–694.Google Scholar
  17. Groom, R. W., Baily, R. C. (1989), Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion, Journal of Geophysical Research 94, 1913–1925.Google Scholar
  18. Heise, W., Pous, J. (2001), Effects of anisotropy on the two-dimensional inversion procedure, Geophys. J. Int. 147, 610–621.Google Scholar
  19. Hjelt, S.E., Korja, T. (1993), Lithospheric and upper-mantle structures, results of electromagnetic soundings in Europe, Physics of the Earth and Planetary Interiors 79, 137–177.Google Scholar
  20. Hyndmann, R. D. (1988), Dipping seismic reflectors, electrically conductive zones and trapped water in the crust over a subducting plate, Journal of Geophysical Research 93, 13391–13405.Google Scholar
  21. Hyndman, R. D., Shearer, P. M. (1989), Water in the lower continental crust: modelling magnetotelluric and seismic reflection results, Geophys. J. Int. 98, 343–365.Google Scholar
  22. Jain, S.C., Yedekar, D. B., Nair, K. K. K. (1991), Central Indian Shear zone: a major Precambrian crustal boundary, Journal Geological Society of India 37, 521–531.Google Scholar
  23. Jain, S.C., Nair, K. K. K., Yedekar, D. B. (1995), Geology of the Son- Narmada-Tapti lineament zone in Central India, Geological Survey of India special publication 10, 1–154.Google Scholar
  24. Jones, A. G. (1983), On the equivalence of the “Niblett” and “Bostick” transoframtions in the magnetotelluric method, Journal of Geophysics 53, 72–73.Google Scholar
  25. Jones, A. G. (1987), MT and reflection: an essential combination, Geophysical Journal Royal Astronomical Society 89, 7–18.Google Scholar
  26. Jones, A. G. (1988), Static shift of magnetotelluric data and its removal in a sedimentary basin environment, Geophysics 53, 967–978.Google Scholar
  27. Jones, A. G. (1992), Electrical properties of the Continental Lower Crust, In The Lower Continental Crust (eds. Fountain et al.) Elsevier, Amsterdam. pp. 81–143.Google Scholar
  28. Jones, A. G. (1993), Electromagnetic images of modern and ancient subduction zones, Tectonophysics 219, 29–45.Google Scholar
  29. Jones, A. G. (1999), Imaging the continental upper mantle using electromagnetic methods, Lithos 48, 57–80.Google Scholar
  30. Kaila, K. L., Krishna, V. G., Mall, D. M. (1981), Crustal structure along Mehmadabad-Billimora profile in the Cambay basin, India, from Deep Seismic Soundings, Tectonophysics 76, 99–130.Google Scholar
  31. Kaila, K. L., Rao, I. B. P., Rao, P. K., Rao, N. M., Krishna, V. G., Sridhar, A. R. (1989), DSS studies over Deccan traps along the Thuadara-Sendhwa-sindad profile, across Narmada-Son lineament, India, AGU Geophysical Monograph Series 51, 113–127.Google Scholar
  32. Kaila, K. L., Reddy, P. R., Dixit, M. M., Rao, P. K. (1985), Crustal structure across the Narmada-Son lineament, Central India from deep seismic soundings, Journal Geological Society of India 26, 465–480.Google Scholar
  33. Kay, R. W., Kay, S. M. (1986), Petrology and geochemistry of lower continental crust: an overview, In The nature of the Lower Continental Crust (eds. Dawson et al.) (Geological Society Special Publication) V. 24, pp. 147–159.Google Scholar
  34. Kennet, B. L. N., and Widyantoro, S. (1999), A low seismic wave speed anomaly beneath northwestern India: a seismic signature of the Deccan plume?, Earth Planet Space Letters 165, 145–155.Google Scholar
  35. Mackenzie, G. D., Thybo, H., Maguire, P. K. H. (2005), Crustal velocity structure across the Main Ethiopian Rift: results from two-dimensional wide-angle seismic modeling, Geophys. J. Int. 162, 994–1006.Google Scholar
  36. Mall, D. M., Reddy,P. R., Mooney, W, D. (2008), Collision tectonics of the Central Indian Stuture zone as inferred from a deep seismic sounding study, Tectonophysics 460, 116–1123.Google Scholar
  37. Mall, D. M., Sharma, S. R. (2009), Tectonics and thermal structure of western Satpura, India, Journal of Asian Earth Sciences 34, 450–457.Google Scholar
  38. Mall, D. M., Singh, A. P., Sarkar, D. (2005), Structure and seismotectonics of Satpura, Central India, Current Science 88, 1621–1627.Google Scholar
  39. Mareschal, M., Fyfe, W. S., Percival, J., Chan, T. (1992), Grain-boundary graphite in Kapukasing gneisses and implication for lower crustal conductivity, Nature 357, 674–676.Google Scholar
  40. McNeice, G. W., Jones, A. G. (2001), Multi-site, multi-frequency tensor decomposition of magnetotelluric data, Geophysics 66, 158–163.Google Scholar
  41. Miller, S. L. M., Stewart, R. R. (1990), Effects of lithology, porostity and shaliness on P- and S-wave velocities from sonic logs, Canadian Journal of Exploration Geophysics 26, 94–103.Google Scholar
  42. Naganjaneyulu, K., Dhanujaya Naidu, G., Someswara Rao, M., Ravi Shankar, K., Kishore, S. R. K., Murthy, D. N., Veeraswamy, K., Harinarayana, T. (2010), Deep Crustal Electromagnetic strucute of Central India Tectonic Zone and its implications, Physics of the Earth and Planetary Interiors 181, 60–68.Google Scholar
  43. Naganjaneyulu, K., Santosh, M. (2010), The Central Indian Tectonic Zone: A geophysical perspective on continental amalgamation along a Mesoproterozoic suture, Gondwana Research 18, 547–564.Google Scholar
  44. Naidu, G. D., Harinarayana, T. (2009), Deep electrical imaging of the Narmada-Tapti region, central India from magnetotellurics, Tectonophysics 476, 538–549.Google Scholar
  45. Naqvi, S. M., Rao, D., Narain, H. (1974), The protocontinental growth of the Indian shield and the antiquity of its rift valleys, Precambrian Research 1, 345–398.Google Scholar
  46. Nesbitt, B. (1993), Electrical resistivities of crustal fluids, Journal of Geophysical Research 98, 4301–4310.Google Scholar
  47. Pande, K. (2002), Age and duration of the Deccan traps, India: A review of radiometric and paleomagnetic constraints, Proceedings Indian Academy of Science 111, 115–123.Google Scholar
  48. Patro, B. P. K., Harinarayana, T., Sastry, R. S., Madhusudan Rao, Manoj, C., Naganjaneyulu, K., Sarma, S. V. S. (2005), Electrical imaging of Narmada-Son Lineament Zone, Central India from magnetotellurics, Physics of the Earth and Planetary Interiors 148, 215–232.Google Scholar
  49. Radakrishna, B. P. (1989), Suspect tectono-stratigraphic terrane elements in the Indian Subcontinent, Journal of Geological Society of India 34, 1–24.Google Scholar
  50. Rai, S. N., Thiagarajan, S. (2006), A tentative 2D thermal model of central India across the Narmada-Son Lineament (NSL), Journal of Asian Earth Sciences 28, 363–371.Google Scholar
  51. Rajendran, K., Rajendran, C. P. (1999), Seismogenesis in the stable continental interiors: an appraisal based on two examples from India, Tectonophysics 305, 355–370.Google Scholar
  52. Rao, B. R. (2000), Historical seismicity and deformation rates in the Indian Peninsular Shield, Journal of Seismology 4, 247–258.Google Scholar
  53. Rao, C. K., Ogawa, Y., Gokarn, S. G., Gupta, G. (2004), Electromagnetic imaging of magma across the Narmada Son lineament, central India, Earth Planet Space 56, 229–238.Google Scholar
  54. Rao, N. P., Tsukuda, T., Kosuga, M., Bhatia, S. C., Suresh, G. (2002), Deep lower crustal earthquakes in central India: inferences from the analysis of regional broadband data of the 1997 May 21, Jabalpur earthquake, Geophys. J. Int. 148, 132–138.Google Scholar
  55. Rao, B. R., Rao, V. K. (2006), Influence of fluids on deep crustal Jabalpur earthquake of 21, May 1997: Geophysical evidences, Journal of Seismology 10, 301–314.Google Scholar
  56. Reyners, M., Eberhart-Phillips, D., Stuart, G. (2007), The role of fluids in lower-crustal earthquakes near continental rifts, Nature 446, doi:10.1038/nature05743.
  57. Rodi, W., Mackie, R. L. (2001), Nonlinear conjugate gradient algorithm for 2-D magnetotelluric inversion, Geophysics 66, 174–187.Google Scholar
  58. Roy, A., Prasad, M. H. (2003), Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implications in Rodinian crustal assembly, Journal of Asian Earth Sciences 22, 115–129.Google Scholar
  59. Roy, A., Prasad, M. H., Bhowmik, S. K. (2001), Recognition of Pre-Grenvillian and Grenvillain tectonothermal events in the Central Indian Tectonic Zones: Implications on Rodinian crustal assembly, Gondwana Research 4, 755–757.Google Scholar
  60. Roy, S., Rao, R. U. M. (2000), Heatflow in the Indian shield, Journal of Geophysical Research 105, 25587–25604.Google Scholar
  61. Sanders, I. S. (1991), Exhumed lower crust in NW Ireland, and a model for crustal conductivity, Journal of the Geological Society (London) 148, 131–135.Google Scholar
  62. Sarbadhikari, A. B., Bhowmik, S. K. (2008), Constraining the metamorphic evolution of a cryptic hot Mesoproterozoic orogen in the Central Indian Tectonic Zone, using P-T pseudosection modeling of mafic intrustions and host reworked granulites, Precambrian Research 162, 128–149.Google Scholar
  63. Sarkar, A., Bodas, M.S., Kundu, H.K., Mamgain, V.V., Ravishankar (1998), Geochronology and geochemistry of Mesoproterozoic intrusive plutonites from the eastern segment of the Mahakoshal Greenstone Belt, Central India(Ext. Abstract), Gondwana Research Group Miscellaneous Publications (Osaka) 8, 82–85.Google Scholar
  64. Selway, K., Hand, M., Heinson, G. S., Payne, J. L. (2009), Magnetotelluric constraint on subduction polarity: Reversing reconstruction models for Proterozoic Australia, Geology 37, 799–802.Google Scholar
  65. Seno, T., and Saito, A. (1994), Recent East African earthquakes in the lower crust, Earth Planetary Science Letters 121, 125–136.Google Scholar
  66. Senthil Kumar, P., Menon, R., Koti Reddy, G. (2007), Crustal geotherm in southern Deccan Basalt Province, India: The Moho is as cold as adjoin cratons, In Plates, plumes, and planetary processes (eds. Foulger, G. R., Jurdy, D. M.), Geological Society of America Special Paper 430, 275–284.Google Scholar
  67. Singh, A. P., Meissner, R. (1995), Crustal configuration of the Narmada-Tapti region (India) from gravity studies, Journal of Geodynamics 20, 111–127.Google Scholar
  68. Tullis, J., Yund, R. A., Farver, J. (1996), Deformation-enhanced fluid distribution in deldspar aggregates and implicates for ductile shear zones, Geology 24, 63–66.Google Scholar
  69. Turkoglu, E, Unsworth, M. J., Caglar, I., Tuncer, V., Avsar, V. (2008), Lithospheric structure of the Arabia-Eurasia collision zone in Eastern Anatolia from magnetotelluric exploration: evidence for widespread weakening by fluids, Geology 36, 619–622.Google Scholar
  70. Unsworth, M. J., Jones, A. G., Wei, W., Marquis, G., Gokarn, S. G., Spratt, J. E., the INDEPTH-MT team (2005), Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data, Nature 438, 78–81.Google Scholar
  71. Vanyan L. L., Gliko A. O. (1999), Seismic and electromagnetic evidence of dehydration as a free water source in the reactivated crust, Geophys. J. Int. 137, 159–162.Google Scholar
  72. Verma, R. K., Banerjee, P. (1992), Nature of continental crust along Narmada-Son lineament inferred from gravity and deep seismic sounding data, Tectonophysics 202, 375–397.Google Scholar
  73. Wannamaker, P. E., Booker, J. R., Jones, A. G., Chave, A. D., Filloux, J. H., Waff, H. S., Law, L. K. (1989), Resistivity cross-section through Juan de Fuca subduction system and its tectonic implications, Journal of Geophysical Research 94, 14127–14144.Google Scholar
  74. Wannamaker, P.E., Hasterok, D. P., Johnston, J. M., Stodt, J. A., Pellerin, L., Maris, V., Doerner, W. M., Groenewold, K. A., Unswroth, M. J. (2008), Lithospheric dismemberment and magmatic processes of the Great Basin-Colorado Plateau transition, Utah, implied from magnetotellurics, Geochemistry Geophysics Geosystems 9, doi:10.1029/2007GC001886.
  75. West, W. D. (1962), The line of Narmada-son valley, Current Science 31, 143–144.Google Scholar
  76. Xu, Y., Shankland, T.J., Poe, B.T. (2000), Laboratory-based electrical conductivity in the Earth’s mantle, Journal of Geophysical Research 105, 27865–27875, doi:10.1029/2000JB900299.
  77. Yedekar, D. B., Jain, S. C., Nair, K. K. K., Dutta, K. (1990), The Central Indian Collision Sture, Geological Survey of India Special Publication 28, 1–43.Google Scholar
  78. Yoshida, M., Divi, R. S., Santosh, M. (2001), Precambrian Central India and its role in the Gondwanland-Rodinia context, Gondwana Research 4, 208–211.Google Scholar
  79. Yoshino, T., Noritake, F. (2011), Unstable graphite films on grain boundaries in crustal rocks, Earth Planetary Science Letters 306, 186–192.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • K. K. Abdul Azeez
    • 1
  • Martyn J. Unsworth
    • 2
  • Prasanta K. Patro
    • 1
  • T. Harinarayana
    • 1
    • 3
  • R. S. Sastry
    • 1
    • 4
  1. 1.CSIR-National Geophysical Research InstituteHyderabadIndia
  2. 2.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  3. 3.Gujarat Energy Research and Management Institute (GERMI)GandhinagarIndia
  4. 4.MadanapalleIndia

Personalised recommendations