Advertisement

Pure and Applied Geophysics

, Volume 170, Issue 6–8, pp 1333–1359 | Cite as

Numerical Simulation of the 2011 Tohoku Tsunami Based on a New Transient FEM Co-seismic Source: Comparison to Far- and Near-Field Observations

  • Stephan T. Grilli
  • Jeffrey C. Harris
  • Tayebeh S. Tajalli Bakhsh
  • Timothy L. Masterlark
  • Christodoulos Kyriakopoulos
  • James T. Kirby
  • Fengyan Shi
Article

Abstract

In this work, we simulate the 2011 M9 Tohoku-Oki tsunami using new coseismic tsunami sources based on inverting onshore and offshore geodetic data, using 3D Finite Element Models (FEM). Such FEMs simulate elastic dislocations along the plate boundary interface separating the stiff subducting Pacific Plate from the relatively weak forearc and volcanic arc of the overriding Eurasian plate. Due in part to the simulated weak forearc materials, such sources produce significant shallow slip (several tens of meters) along the updip portion of the rupture near the trench. To assess the accuracy of the new approach, we compare observations and numerical simulations of the tsunami's far- and near-field coastal impact for: (i) one of the standard seismic inversion sources (UCSB; Shao et al. 2011); and (ii) the new FEM sources. Specifically, results of numerical simulations for both sources, performed using the fully nonlinear and dispersive Boussinesq wave model FUNWAVE-TVD, are compared to DART buoy, GPS tide gauge, and inundation/runup measurements. We use a series of nested model grids with varying resolution (down to 250 m nearshore) and size, and assess effects on model results of the latter and of model physics (such as when including dispersion or not). We also assess the effects of triggering the tsunami sources in the propagation model: (i) either at once as a hot start, or with the spatiotemporal sequence derived from seismic inversion; and (ii) as a specified surface elevation or as a more realistic time and space-varying bottom boundary condition (in the latter case, we compute the initial tsunami generation up to 300 s using the non-hydrostatic model NHWAVE). Although additional refinements are expected in the near future, results based on the current FEM sources better explain long wave near-field observations at DART and GPS buoys near Japan, and measured tsunami inundation, while they simulate observations at distant DART buoys as well or better than the UCSB source. None of the sources, however, are able to explain the largest runup and inundation measured between 39.5° and 40.25°N, which could be due to insufficient model resolution in this region (Sanriku/Ria) of complex bathymetry/topography, and/or to additional tsunami generation mechanisms not represented in the coseismic sources (e.g., splay faults, submarine mass failure). This will be the object of future work.

Keywords

The Tohoku 2011 tsunami tsunami source modeling by FEM with geodetic data assimilation tsunami propagation modeling (near- and far-field) in a Boussinesq model comparison of model results with surface elevation, runup, and inundation observations wave dispersion effects sensitivity analyses to boundary conditions, model physics, and grid parameters 

Notes

Acknowledgments

The first five authors wish to acknowledge support from grant EAR-09-11499/11466 of the US National Sciences Foundation (NSF) Geophysics Program. The last two authors acknowledge the Coastal Geosciences Program, Office of Naval Research for support for development of the FUNWAVE-TVD and NHWAVE models. Academic licensing and technical support for Abaqus software is provided by Dassault Systèmes Simulia Corp.

References

  1. Abadie S, Harris JC, Grilli ST, Fabre R (2012) Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. Journal of Geophysical Research 117(C07646), doi: 10.1029/2011JC007646
  2. Abaqus (2009) Abaqus. Dassault Systemes Simulia Corp., Providence, RI, 6.9-EF edn, URL: http://www.simulia.com
  3. Abe H, Sugeno Y, Chigama A (1990) Estimation of the height of the Sanriku Jogan 11 earthquake-tsunami (A.D. 869) in the Sendai Plain. Zisin [Earthquakes] 43:513–525Google Scholar
  4. Amante C, Eakins BW (2009) ETOPO1 one arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24:19 ppGoogle Scholar
  5. Ammon CJ, Lay T, Kanamori H, Cleveland M (2011) A rupture model of the great 2011 Tohoku earthquake. Earth Planets Space 63:693–696, doi: 10.5047/eps.2011.05.015
  6. Aster R, Borchers B, Thurber C (2005) Parameter estimation and inverse problems. Elsevier Academic Press, AmsterdamGoogle Scholar
  7. Bird P (2003) An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems 4(3):55 pp., doi: 10.1029/2001GC000252.
  8. Chen Q (2006) Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics 132:220–230Google Scholar
  9. Chen Q, Kirby JT, Dalrymple RA, Kennedy AB, Chawla A (2000) Boussinesq modeling of wave transformation, breaking and runup. II: Two horizontal dimensions. J Waterway, Port, Coastal and Ocean Engrng 126:48–56Google Scholar
  10. Chen Q, Kirby JT, Dalrymple RA, ShiF, ThorntonEB (2003) Boussinesq modeling of longshore currents. Journal of Geophysical Research 108(C11):3362, doi: 10.1029/2002JC001308
  11. Day SJ, Watts P, Grilli ST, Kirby J (2005) Mechanical models of the 1975 kalapana, hawaii earthquake and tsunami. Marine Geology 215(1-2):59–92, doi: 10.1016/j.margeo.2004.11.008
  12. DeMets C, Gordon R, Argus D (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters 21:2191–2194Google Scholar
  13. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Physics of the Earth and Planetary Interiors 25(4):297–356Google Scholar
  14. Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Int J Num Meth Fluids 133:442–454Google Scholar
  15. Erduran KS, Ilic S, Kutija V (2005) Hybrid finite-volume finite-difference scheme for solution of Boussinesq equations. Int J Num Meth Fluids 49:1213–1232Google Scholar
  16. Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63:815–820Google Scholar
  17. Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y (2011) Tohoku-Oki earthquake: Displacement reaching the trench axis. Science 334:1240Google Scholar
  18. Geospatial Information Authority of Japan (2011) The 2011 off the Pacific coast of Tohoku Earthquake: Crustal Deformation and Fault Model (Preliminary), http://www.gsi.go.jp/cais/topic110313-index-e.html
  19. Gica E, Spillane M, Titov V (2007) Tsunami hazard assessment using Short-term Inundation Forecasting for Tsunamis (SIFT) tool. In: EASTEC International Symposium 2007—Dynamic Earth: its Origin and Future, Sendai, JapanGoogle Scholar
  20. Gica E, Spillane M, Titov V, Chamberlin C, Newman J (2008) Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT). Tech. rep., NOAA Tech. Memo. OAR PMEL-139,89 ppGoogle Scholar
  21. Gonzalez FI, Milburn HM, Bernard EN, Newman JC (1998) Deep-ocean Assessment and Reporting of Tsunamis (DART): brief overview and status report. In: Proceedings of the International Workshop on Tsunami Disaster Mitigation, Tokyo, Japan, URL: http://www.ndbc.noaa.gov/dart/brief.shtml
  22. Gottlieb S, Shu CW, Tadmor E (2001) Strong stability-preserving high-order time discretization methods. SIAM Review 43:89–112Google Scholar
  23. Grilli S, Ioualalen M, Asavanant J, Shi F, Kirby J, Watts P (2007) Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. Journal of Waterway Port Coastal and Ocean Engineering 133(6):414–428, doi: 10.1061/(ASCE)0733-950X(2007)133:6(414)
  24. Grilli S, Dubosq S, Pophet N, Prignon Y, Kirby J, Shi F (2010) Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the north shore of Puerto Rico and far-field impact on the us east coast. Natural Hazards and Earth System Sciences 10:2109–2125, doi: 10.5194/nhess-2109-2010
  25. Hasegawa A, Uchida N, Igarashi T, Matsuzawa T, Okada T, Miura S, Suwa Y (2007) Asperities and quasi-static slips on the subducting plate boundary east of Tohoku, Northeast Japan. In: TH Dixon and JC Moore (ed) The seismogenic zone of subduction thrust faults, Columbia University Press, New York, pp 451–475Google Scholar
  26. Hatori T (1975) Tsunami magnitude and wave source regions of historical Sanriku tsunamis in Northeast Japan. Bulletin of Earthquake Research Institute 50:397–414Google Scholar
  27. Hayashi Y, Tsushima H, Hirata K, Kimura K, Maeda K (2011) Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations. Earth Planets Space 63:809–813Google Scholar
  28. Hughes K, Masterlark T, Mooney W (2010) Poroelastic stress-coupling between the M9.2 2004 Sumatra-Andaman and M8.7 2005 Nias earthquakes. Earth and Planetary Science Letters 293:289–299, doi: 10.1016/j.epsl.2010.02.043
  29. HYPRE (2006) High Performance Preconditioners. User’s Manual, software version 2.0.0. UCRL-CODE-222953. Center for Applied Scientific Computing, Lawrence Livermore National LaboratoryGoogle Scholar
  30. Ide S, Baltay A, Beroza G (2011) Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoki-Oki earthquake. Science doi: 10.1126/science.1207020
  31. IOC/UNESCO (2011) Casualties by the earthquake and tsunami of March 11, 2011. Bulletin No 29 (9/30/2011), Intergovernmental Oceanographic Commission. URL: http://www.ngdc.noaa.gov/hazard/tsunami/pdf/
  32. Ioualalen M, Asavanant J, Kaewbanjak N, Grilli S, Kirby J, Watts P (2007) Modeling the 26th December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research 112(C07024), doi: 10.1029/2006JC003850
  33. Ito Y, et al. (2011) Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophysical Research Letters 38:L000G05, doi: 10.1029/2011GL048355
  34. Ji C, Wald DJ, Helmberger DV (2002) Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America 92:1192–1207Google Scholar
  35. Karlsson J, Skelton A, Sanden M, Ioualalen M, Kaewbanjak N, and J Asavanant NP, von Matern A (2009) Reconstructions of the coastal impact of the 2004 Indian Ocean tsunami in the Khao Lak area, Thailand. Journal of Geophysical Research 114(C10023), doi: 10.1029/2009JC005516
  36. Kato T, Terada Y, Ito K, Hattori R, Abe T, Miyake T, Koshimura S, Nagai T (2005) Tsunami due to the 2004 September 5th off the Kii peninsula earthquake, Japan, recorded by a new GPS buoy. Earth Planets Space 57:297–301Google Scholar
  37. Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq Modeling Of Wave Transformation, Breaking, And Run-Up. I: 1D. J Waterway, Port, Coastal And Ocean Engrng 126(1):39–47Google Scholar
  38. Kennedy AB, Kirby JT, Chen Q, Dalrymple RA (2001) Determination of inverse depths using direct Boussinesq modelling. Wave Motion 33:225–243Google Scholar
  39. Kim DH, Lynett PJ (2011) Dispersive and nonhydrostatic pressure effects at the front of surges. Journal of Hydraulic Engineering 137(7):754–765, doi: 10.1061/(ASCE)HY.1943-7900.0000345
  40. Kirby JT, Pophet N, Shi F, Grilli ST (2009) Basin scale tsunami propagation modeling using boussinesq models: Parallel implementation in spherical coordinates. In Proc WCCE-ECCE-TCCE Joint Conf on Earthquake and Tsunami (Istanbul, Turkey, June 22-24) paper 100:(published on CD)Google Scholar
  41. Kirby JT, Shi F, Harris JC, Grilli ST (2012) Sensitivity analysis of trans-oceanic tsunami propagation to dispersive and Coriolis effects. Ocean Modeling (in revision):42 pp.Google Scholar
  42. Koper KD, Hutko AR, Lay T, Ammon CJ, Kanamori H (2011) Frequency-dependent rupture process of the 11 March 2011 Mw 9.0 Tohoku earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth Planets Space 58:1–4Google Scholar
  43. Kowalik Z, Murty TS (1993) Numerical modeling of ocean dynamics. World Scientific Pub.Google Scholar
  44. Lay T, Ammon C, Kanamori H, Xue L, Kim M (2011a) Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63:687–692Google Scholar
  45. Lay T, Yamazaki Y, Ammon CJ, Cheung KF, Kanamori H (2011b) The great 2011 Earthquake off the Pacific coast of Tohoku (Mw 9.0): Comparison of deep-water tsunami signals with finite-fault rupture model predictions. Earth Planets Space 63:797–801Google Scholar
  46. Liang Q, Marche F (2009) Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources 32:873–884Google Scholar
  47. Ma G, Shi F, Kirby JT (2012) Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modeling 43-44:22–35Google Scholar
  48. Madsen PA, Fuhrman DR, Schäffer HA (2008) On the solitary wave paradigm for tsunamis. J Geophys Res 113(C12012), doi: 10.1029/2008JC004932
  49. Masterlark T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J Geophys Res 108(B11):17pp, doi: 10.1029/2002JB002296
  50. Masterlark T, Hughes K (2008) The next generation of deformation models for the 2004 M9 Sumatra-Andaman Earthquake. Geophysical Research Letters 35:5 pp, doi: 10.1029/2008GL035198
  51. Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T (2001) The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. Journal of Natural Disaster Science 23(2):83–88Google Scholar
  52. Mori N, Takahashi T, The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2012) Nationwide Post Event Survey and Analysis of the 2011 Tohoku Earthquake Tsunami. Coastal Engineering Journal 54(1):1250001.Google Scholar
  53. Mori N, Takahashi T, Yasuda T, Yanagisawa H (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters 38(L00G14):6 pp., doi: 10.1029/2011GL049210
  54. Okada Y (1985) Surface deformation due to shear and tensile faults in a half space. Bulletin of the Seismological Society of America 75(4):1135–1154Google Scholar
  55. Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 475(7356):373–376, doi: 10.1038/nature10227
  56. Pararas-Carayannis G (2011) Tsunamigenic source mechanism and efficiency of the March 11, 2011 Sanriku earthquake in Japan. Science of Tsunami Hazards 30(2):126–152Google Scholar
  57. Pollitz F, Bürgmann R, Banerjee P (2011) Geodetic slip model of the 2011 M9.0 Tohoku earthquake. Geophysical Research Letters 38:L00G08Google Scholar
  58. Ryan W, Carbotte S, Coplan J, O’Hara S, Melkonian A, Arko R, Weissel R, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(Q03014), doi: 10.1029/2008GC002332
  59. Saito T, Ito Y, Inazu D, Hino R (2011) Tsunami source of the 2011 Tohoku-oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations. Geophysical Research Letters 38:L00G19, doi: 10.1029/2011GL049089
  60. Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys 144:455–470Google Scholar
  61. Sato M, Ishikawa T, Ujirara N, Yoshida S, Fujita M, Mochizuki M, Asada A (2011) Displacement above the hypocenter of the 2011 Tohoku-Oki Earthquake. Science 332:1395, doi: 10.1126/science.1207401
  62. Sawai Y, Shishikura M, Komatsubara J (2008) A study of paleotsunami using hard corer in Sendai plain (Sendai City, Natori City, Iwanuma City, Watari Town, Yamamoto Town), Miyagi, Japan. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan URL: http://unit.aist.go.jp/actfault-eq/english/reports/h19seika/index.html
  63. Seno T, Sakurai T, Stein S (1996) Can the Okhotsk plate be discriminated from the North American plate? Journal of Geophysical Research 101:11,305–11,316Google Scholar
  64. Shao G, Li X, Ji C, Maeda T (2011) Focal mechanism and slip history of 2011 Mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves. Earth Planets Space 63:559–564Google Scholar
  65. Shi F, Kirby JT, Harris JC, Geiman JD, Grilli ST (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modeling 43-44:36–51Google Scholar
  66. Simons M, Minson S, Sladen A, Ortega F, Jiang J, Owen S, L Meng JPA, Wei S, Chu R, Helmberger D, Kanamori H, Hetland E, Moore A, Webb F (2011) The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science doi: 10.1126/science.1206731
  67. Tappin D, Watts P, Grilli S (2008) The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event. Natural Hazards and Earth System Sciences 8:243–266.http://www.nat-hazards-earth-syst-sci.net/8/243/2008/
  68. Tehranirad B, Shi F, Kirby JT, Harris JC, Grilli ST (2011) Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0. Tech. rep., No. CACR-11-02, Center for Applied Coastal Research, University of DelawareGoogle Scholar
  69. The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2011) Nationwide field survey of the 2011 off the Pacific coast of Tohoku earthquake tsunami. Journal of Japan Society of Civil Engineers 67(1):63–66Google Scholar
  70. Titov VV, Gonzalez FI, Bernard EN, Eble MC, Mojfeld HO, Newman JC, Venturato AJ (2005) Real-time tsunami forecasting: Challenges and solutions. Nat Hazards 35:35–41, doi: 10.1007/s11069- 004-2403-3
  71. Tonelli M, Petti M (2009) Hybrid finite volume - finite difference scheme for 2DH improved Boussinesq equations. Coast Engrng 56:609–620Google Scholar
  72. Tsushima H, Hirata K, Hayashi Y, Kimura YTK, Sakai S, Shinohara M, Kanazawa T, Hino R, Maeda K (2011) Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake Hiroaki Tsushima. Earth Planets Space 63:821–826Google Scholar
  73. Wang H (2000) Theory of linear poroelasticity: With applications to geomechanics. Princeton University PressGoogle Scholar
  74. Watada S, Satake K, Fujii Y (2011) Origin of travel time anomalies of distant tsunami. In: AGU Fall Meeting 2011 poster NH11AGoogle Scholar
  75. Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences 3:391–402Google Scholar
  76. Wei G, Kirby JT (1995) A time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering 120:251–261Google Scholar
  77. Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. Journal of Fluid Mechanics 294:71–92Google Scholar
  78. Yamaguchi Y, Kahle A, Tsu H, Kawakami T, Pniel M (1998) Overview of advanced space borne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sensing 36:1062–1071Google Scholar
  79. Yamamoto S, Kano S, Daiguchi H (1998) An efficient CFD approach for simulating unsteady hypersonic shock-shock interference floes. Comput Fluids 27:571–580Google Scholar
  80. Yamazaki Y, Kowalik Z, Cheung KF (2009) Depth-integrated, nonhydrostatic model for wave breaking and run-up. International Journal of Numerical Methods in Fluids 61(5):473–497Google Scholar
  81. Yamazaki Y, Lay T, Cheung K, Yue H, Kanamori H (2011a) Modeling near-field tsunami observations to improve finite fault slip models for the 11 March 2011 Tohoku earthquake. Geophysical Research Letters 38:L049130, doi: 10.1029/2011GL049130
  82. Yamazaki Y, Roeber V, Cheung KF, Lay T (2011b) Modeling the 2011 Tohoku-oki Tsunami and its Impacts on Hawaii. In: Proceedings of OCEANS 2011. Waikoloa, HI, USA. 9 pp.Google Scholar
  83. Yamazaki Y, Cheung K, Pawlak G, Lay T (2012) Surges along the Honolulu coast from the 2011 Tohoku tsunami. Geophysical Research Letters 39:L09604, doi: 10.1029/2012GL051624
  84. Yue H, Lay T (2011) Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophysical Research Letters 38:L00G09, doi: 10.1029/2011GL048700
  85. Zhou JG, Gauson DM, Mingham CG, Ingraml DM (2001) The surface gradient method for the treatment of source terms in the shallow water equations. J Comp Phys 168:1–25Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Stephan T. Grilli
    • 1
  • Jeffrey C. Harris
    • 1
  • Tayebeh S. Tajalli Bakhsh
    • 1
  • Timothy L. Masterlark
    • 2
  • Christodoulos Kyriakopoulos
    • 3
  • James T. Kirby
    • 4
  • Fengyan Shi
    • 4
  1. 1.Department of Ocean EngineeringUniversity of Rhode IslandNarragansettUSA
  2. 2.Department of Geological SciencesThe University of Alabama (UoA)TuscaloosaUSA
  3. 3.Instituto Nazionale di Geofisica e VulcanologiaRomeItaly
  4. 4.Center for Applied Coastal Research, University of DelawareNewarkUSA

Personalised recommendations