Pure and Applied Geophysics

, Volume 170, Issue 6–8, pp 1309–1331 | Cite as

Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast

  • Yong WeiEmail author
  • Christopher Chamberlin
  • Vasily V. Titov
  • Liujuan Tang
  • Eddie N. Bernard


During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities.


Tsunami tsunami forecast Japan 2011 inundation tsunami source near field 



The authors are grateful to NOWPHAS for providing nearshore tsunami measurements that were used in this study. We thank L. Wright for her assistance in digitizing the inundation measurements. We are also grateful to Dr. Jose Borrero and two anonymous reviewers for their valuable comments and suggestions on improving the quality of this paper. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA100AR4320148, JISAO Contribution 1826; PMEL Contribution 3795.

Supplementary material

Supplementary material 1 (MP4 26915 kb)


  1. Ammon, C.J., Thorne, L., Kanamori, H., and Cleveland, M. (2011). A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63(7), 675–679.Google Scholar
  2. Beavan, J., Wang, X., Holden, C., Wilson, K., Power, K., Prasetya, G., Bevis, M. and Kautoke, R. (2010). Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009, Nature, 466, 959–963.Google Scholar
  3. Blewitt, G., Kreemer, C., Hammond, W.C., Plag, H.P., Stein, S., and Okal, E. (2006). Rapid determination of earthquake magnitude using GPS for tsunami warning system, Geophys. Res. Lett., 33, L11309, doi: 10.1029/2006GL026145.
  4. Burwell, D., Tolkova, E., and Chawla, A. (2007). Diffusion and dispersion characterization of a numerical tsunami model, Ocean Modeling, 19(1–2), 10–30.Google Scholar
  5. Chow, V.T. (1959). Open-channel hydraulics, New York, McGraw–Hill Book co., 680 p.Google Scholar
  6. Eble, M.C. and González, F.I. (1991). Deep-ocean bottom pressure measurements in the northeast Pacific, J. Atmos. Ocean. Tech., 8(2), 221–233.Google Scholar
  7. Fujii, Y. and Satake, K. (2008). Tsunami sources of the November 2006 and January 2007 Great Kuril Earthquakes, Bull. Seismol. Soc. of Amer., 98(3), 1559–1571.Google Scholar
  8. Fujii, Y., Sataki, K., Sakai, S., Shinohara, M. and Kanazawa, T. (2011). Tsunami source of the 2011 off the Pacific coast of Tohoku, Japan earthquake, Earth Planets Space, Special Issue: First Results of the 2011 Off the Pacific Coast of Tohoku Earthquake, 63(7), 815–820.Google Scholar
  9. Geist, E.L., Lynett, P.J., and Chaytor, J.D. (2009). Hydrodynamic modeling of tsunamis from the Currituck landslide, Mar. Geol. 264, 41–52.Google Scholar
  10. Gica, E., Spillane, M., Titov, V.V., Chamberlin, C., and Newman, J.C. (2008). Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT), NOAA Tech. Memo. OAR PMEL-139, 89 pp.Google Scholar
  11. Glimsdal, S., Pedersen, G. K., Atakan, K., Harbitz, C.B., Langtangen, H.P., and Lovholt, F. (2006). Propagation of the Dec. 26, 2004, Indian Ocean Tsunami: effects of dispersion and source characteristics, Int. J. Fluid Mech. Res, 33, 15–43.Google Scholar
  12. González, F.I., Bernard, E.N., Meinig, C., Eble, M., Mofjeld, H.O., and Stalin, S. (2005). The NTHMP tsunameter network, Nat. Hazards. 35(1), Special Issue, U.S. National Tsunami Hazard Mitigation Program, pp. 25–39.Google Scholar
  13. González, F.I., Milburn, H.M., Bernard, E.N. and Newman, J.C. (1998). Deep-ocean Assessment and Reporting of Tsunamis (DART): Brief Overview and Status Report. In Proceedings of the International Workshop on Tsunami Disaster Mitigation, 19–22 January 1998, Tokyo, Japan.Google Scholar
  14. Grue, J., Peliovshy, E.N., Fructus, D., Talipova, T., and Kharif, C. (2008). Formulation of undular bores and solitary waves in the strait of Malacca caused by the 26 December 2004 Indian Ocean tsunami, J. Geophys. Res., 113, C05008, doi: 10.1029/2007JC004343.
  15. Hayes, G. (2011). Rapid source characterization of the 03-11-2011 M w 9.0 off the Pacific coast of Tohoku earthquake, Earth Planets Space, Special Issue: First Results of the 2011 Off the Pacific Coast of Tohoku Earthquake, 63(7), 525–528.Google Scholar
  16. Hayes, G.P., Earle, P.S., Benz, H.M., Wald, D.J., Briggs, R., and the USGS/NEIC Earthquake Response Team (2011). 88 hours: the U.S. Geological Survey National Earthquake Information Center response to the March 11, 2011 M w 9.0 Tohoku earthquake, Seismol. Res. Lett., 82(4), 481–493, doi: 10.1785/gssrl.82.4.481.
  17. Hirata, K., Aoyagi, M., Mikada, H., Kawaguchi, K., Kaiho, Y., Iwase, R., Morita, S., Fuhisawa, I., Sugioka, H., Mitsuzawa, K., Suyehiro, K., Kinoshita, H., and Fujiwara, N. (2002). Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone, IEEE J. Oceanic Eng., 27, 170–181, doi: 10.1109/JOE.202.1002471.
  18. Ji, C., Wald, D.J., and Helmberger, D.V. (2002). Source description of the 1999 Hector Mine, California earthquake; Part 1: Wavelet domain inversion theory and resolution analysis, Bull. Seism. Soc. Am., 92(4), 1192–1207.Google Scholar
  19. Kânoğlu, U., Titov, V.V., Aydin, B., Moore, C., Spillane, M., and Synolakis, C.E. (2012). Propagation of long waves with finite-crest length over a flat bottom, Proc. Roy. Soc. Lond. A., in review.Google Scholar
  20. Kato, T., Terada, Y., Kinoshita, M., Kakimoto, H., Isshiki, H., Matsuishi, M., Yokoyama, A., and Tanno, T. (2000). Real-time observation of tsunami by RTK-GPS, Earth Planets Space, 52, 841–845.Google Scholar
  21. Kato, T., Terada, Y., Nagai, T., Shimizu, K., Tomita, T. and Koshimura, S. (2008). Development of a new tsunami monitoring system using a GPS buoy, American Geophysical Union, Fall Meeting 2008, abstract #G43B-03.Google Scholar
  22. Kerr, R. (2005). Failure to gauge the quake crippled the warning effort, Science, 307, 201.Google Scholar
  23. Kuwayama, T. (2007). Quantitative tsunami forecast system. ICG/PTWS Tsunami Warning Center Coordination Meeting, Honolulu, HI, 17–19 January 2007.Google Scholar
  24. Lay, T., Ammon, C.J., Kanamori, H., Rivera, L., Koper, K.D. and Hutko, A.R. (2010). The 2009 Samoa-Tonga great earthquake triggered doublet, Nature, 466, 964–968, doi: 10.1038/nature09214.
  25. Lay, T. and Kanamori, H. (2011). Insights from the great 2011 Japan earthquake, Physics Today, 64(12), 33–39.Google Scholar
  26. Maeda, T., Furumura, T., Sakai, S., and Shinohara, M. (2011). Significant tsunami observed at ocean-bottom pressure gauges during the 2011 off the Pacific coast of Tohoku earthquake, Earth Planets Space, 63(7), 803–808.Google Scholar
  27. Meinig, C., Stalin, S.E., Nakamura, A.I., González, F., and Milburn, H.G. (2005). Technology Developments in Real-Time Tsunami Measuring, Monitoring and Forecasting. In Oceans 2005 MTS/IEEE, 19–23 September 2005, Washington, D.C.Google Scholar
  28. Ministry of Land, Infrastructure, Transport and Tourism of Japan (2011a). Status survey reports of the East Japan Earthquake, Ministry of Land, Infrastructure, Transport and Tourism Press Release (first report), pp 16.Google Scholar
  29. Ministry of Land, Infrastructure, Transport and Tourism of Japan (2011b). The Great East Japan Earthquake (107th report): Outline, Ministry of Land, Infrastructure, Transport and Tourism, pp 1.Google Scholar
  30. Mofjeld, H.O., Titov, V.V., González, F.I., and Newman, J.C. (2001). Tsunami scattering provinces in the Pacific Ocean, Geophys. Res. Lett., 28(2), 335–337.Google Scholar
  31. Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett., 38, L00G14, doi: 10.1029/2011GL049210.
  32. Newman, A.V. (2011). Hidden depth, Nature, 474, 441–443.Google Scholar
  33. Nettles, M., Ekstrom, G. and Koss, H.C. (2011). Centroid-momnet-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks, Earth Planets Space, 63(7), 519–523.Google Scholar
  34. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc. Am. 75(4), 1135–1154.Google Scholar
  35. Okal, E. A. and Synolakis, C.E. (2004). Source discriminants for near-field tsunamis, Geophys. J. Int. 158, 899–912, doi:  10.1111/j/1365-246X.2004.02347.
  36. Percival, D.B., Denbo, D.W., Eble, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., and Titov, V.V. (2010). Extraction of tsunami source coefficients via inversion of DART® buoy data, Nat. Hazards, doi: 10.1007/s11069-010-9688-1.
  37. Pietrzek, J., Socquet, A., Ham, D., Simons, W., Vigny, C., Labeur, R.J., Schrama, E., Stelling, G., and Vatvani, D. (2007). Defining the source region of the Indian Ocean Tsunami from GPS, altimeters, tide gauges and tsunami models, Earth and Planetary Science Letters, 261(1–2), 49–64.Google Scholar
  38. Satake, K. and Kanamori, H. (1991). Use of tsunami waveforms for earthquake source study, Nat. Hazards, 4, 193–208.Google Scholar
  39. Satake, K. (1987). Inversion of tsunami waveforms for the estimation of a fault heterogeneity: methods and numerical experiments, J. Phys. Earth, 35, 241–254.Google Scholar
  40. Sato, M, Ishikawa, T., Ujihara, N., Yoshid,a S., Fujita, M., Mochizuki, M., and Asada, A. (2011). Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake, Science, 332, 1395.Google Scholar
  41. Simons, M., Minson, S.E., Sladen, A., Ortega, F., Jiang, J., Owen, S.E., Meng, L.,. Ampuero, J-P, Wei, S., Chu, R., Helmberger, D.V., Kanamori, H., Hetland, E., Moore, A.W., and Webb, F.H. (2011). The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megethrust from seconds to centuries, Science, 332(6036), 1421–1425.Google Scholar
  42. Synolakis, C.E., Liu, P., Philip, H.A., Carrier, G. and Yeh, H. (1997), Tsunamigenic Sea-Floor Deformations, Science, v. 278 no. 5338, pp. 598–600, doi: 10.1126/science.278.5338.598.
  43. Synolakis, C.E., Bernard, E.N., Titov, V.V., Kânoğlu, U., and González, F.I. (2008). Validation and verification of tsunami numerical models, Pure Appl. Geophys. 165(11–12), 2197–2228.Google Scholar
  44. Tadepalli, S., and Synolakis, C.E. (1994). The Run-Up of N-Waves on Sloping Beaches. Proc. Roy. Soc. Lond. A 445(1923):99–112.Google Scholar
  45. Tang, L., Titov, V.V., Bernard, E., Wei, Y., Chamberlin, C., Newman, J.C., Mofjeld, H., Arcas, D., Eble, M., Moore, C., Uslu, B., Pells, C., Spillane, M.C., Wright, L.M., and Gica, E. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements, J. Geophys. Res., doi: 10.1029/2011JC007635.
  46. Tang, L., Titov, V. V., and Chamberlin, C. D. (2009). Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting, J. Geophys. Res., 114, C12025, doi: 10.1029/2009JC005476.
  47. Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C., Gica, E., and Newman, J. (2008). Tsunami forecast analysis for the May 2006 Tonga tsunami. J. Geophys. Res., 113, C12015, doi: 10.1029/2008JC004922.
  48. Tatehata, H. (1997). The new tsunami warning system of the Japan Meteorological Agency. In G. Hebenstreit (ed.), Perspectives of Tsunami Hazard Reduction, Kluwer Acad. Pub., 175–188.Google Scholar
  49. Titov, V.V. (2009). Tsunami forecasting, Chapter 12 in The Sea, Volume 15: Tsunamis, Harvard University Press, Cambridge, MA and London, England, 371–400.Google Scholar
  50. Titov, V.V. and González, F.I. (1997). Implementation and testing of the Method of Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 11 pp.Google Scholar
  51. Titov, V.V., González, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C., and Venturato, A.J. (2005). Real-time tsunami forecasting: challenges and solutions, Nat. Hazards, 35(1), Special Issue, U.S. National Tsunami Hazard Mitigation Program, pp. 41–58.Google Scholar
  52. Titov, V.V. and Synolakis, C.E. (1995). Modeling of breaking and non-breaking long-wave evoluation and runup using VTCS-2, J. Waterway, Port, Coastal, and Ocean Eng., 121, 308–316.Google Scholar
  53. Titov, V.V. and Synolakis, C.E. (1998). Numerical modeling of tidal wave runup, J. Waterway, Port Coastal Ocean Eng., 124(4), 157–171.Google Scholar
  54. Tsushima, H., Hino, R., Fujimoto, H., Tanioka, Y., and Imamura, F. (2009). Near-field tsunami forecasting from cabled ocean bottom pressure data, J. Geophys. Res., 114, B06309, doi: 10.1029/2008JB005988.
  55. Tsushima, H., Hirata, K., Hayashi, Y., Tanioka, Y., Kimura, K., Sakai, S., Shimohara, M., Kanazawa, T., Hino, R., and Maeda, K. (2011). Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku earthquake, Earth, Palnets, and Space, Special Issue: First Results of the 2011 Off the Pacific Coast of Tohoku Earthquake, 63(7), 821–826.Google Scholar
  56. Uslu, B., Power, W., Greeslade, D., Eble, M., and Titov, V.V. (2011). The July 15, 2009 Fiordland, New Zealand tsunami: real–time assessment. Pure Appl. Geophys., 168, 1963–1972.Google Scholar
  57. Vigny C, Socquet A, Peyrat S, Ruegg JC, Métois M, Madariaga R, Morvan S, Lancieri M, Lacassin R, Campos J, Carrizo D, Bejar-Pizarro M, Barrientos S, Armijo R, Aranda C, Valderas-Bermejo MC, Ortega I, Bondoux F, Baize S, Lyon-Caen H, Pavez A, Vilotte JP, Bevis M, Brooks B, Smalley R, Parra H, Baez JC, Blanco M, Cimbaro S, Kendrick E. (2011). The 2010 M w 8.8 Maule megathrust earthquake of central Chile, monitored by GPS, Science, 332, 1417–1421.Google Scholar
  58. Wei, Y., Bernard, E., Tang, L., Weiss, R., Titov, V., Moore, C., Spillane, M., Hopkins, M., and Kânoğlu, U. (2008). Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. Geophys. Res. Lett. 35, L04609, doi: 10.1029/2007GL032250.
  59. Wei, Y., Cheung, K.F., Curtis, G.D., and McCreery, C.S. (2003). Inverse algorithm for tsunami forecasts, J. Waterway, Port, Coastal and Ocean Eng., 129(2), 60–69.Google Scholar
  60. Wei, Y., Titov, V.V., Newman, A.V., Hayes, G., Tang, L. and Chamberlin, C. (2011). Near-field hazard assessment of March 11, 2011 Japan tsunami sources inferred from different methods, In Proceedings of Oceans’ 11 MTS/IEEE, Kona, IEEE, Piscataway, NJ, 19–22 September 2011, No. 6107294, 9 pp.Google Scholar
  61. Whitmore, P.M. (2009). Tsunami warning systems, Chapter 13 in The Sea, Volume 15: Tsunamis, Harvard University Press, Cambridge, MA and London, England, 401–442.Google Scholar
  62. Yamazaki, Y., Lay, T., Cheung, K.F., Yue, H., and Kanamori, H. (2011). Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake, Geophys. Res. Lett., 38, L12605, doi: 10.1029/2011GL047508.
  63. Yeh, H., (1991). Tsunami bore runup. Natural Hazards, 4(2–3), 209–220.Google Scholar
  64. Zhou, H., Moore, C.W., Wei, Y. and Titov, V.V. (2011). A nested-grid Boussinesq-type approach to modeling dispersive propagation and runup of landslide-generated tsunamis, Nat. Hazards Earth Syst. Sci., 11, 2677–2697, doi: 10.519/nhess-11-2677-2011.
  65. Zhou, H., Wei, Y. and Titov, V.V. (2012). Dispersive modeling of the 2009 Samoa tsunami, Geophys. Res. Lett., in press.Google Scholar

Copyright information

© Springer Basel (outside the USA) 2012

Authors and Affiliations

  • Yong Wei
    • 1
    • 2
    Email author
  • Christopher Chamberlin
    • 1
    • 2
  • Vasily V. Titov
    • 2
  • Liujuan Tang
    • 1
    • 2
  • Eddie N. Bernard
    • 2
  1. 1.Joint Institute for the Study of Atmosphere and Ocean (JISAO)University of WashingtonSeattleUSA
  2. 2.Pacific Marine Environmental LaboratoryNational Oceanic and Atmospheric AdministrationSeattleUSA

Personalised recommendations