Pure and Applied Geophysics

, Volume 170, Issue 6–8, pp 1033–1046 | Cite as

The 11 March 2011 Tohoku Tsunami Survey in Rikuzentakata and Comparison with Historical Events

  • Haijiang Liu
  • Takenori Shimozono
  • Tomohiro Takagawa
  • Akio Okayasu
  • Hermann M. Fritz
  • Shinji Sato
  • Yoshimitsu Tajima


On 11 March 2011, a moment magnitude Mw = 9.0 earthquake occurred off the Japan Tohoku coast causing catastrophic damage and loss of human lives. In the immediate aftermath of the earthquake, we conducted the reconnaissance survey in the city of Rikuzentakata, Japan. In comparison with three previous historical tsunamis impacting the same region, the 2011 event presented the largest values with respect to the tsunami height, the inundation area and the inundation distance. A representative tsunami height of 15 m was recorded in Rikuzentakata, with increased heights of 20 m around rocky headlands. In terms of the inundation area, the 2011 Tohoku tsunami exceeded by almost 2.6 times the area flooded by the 1960 Chilean tsunami, which ranks second among the four events compared. The maximum tsunami inundation distance was 8.1 km along the Kesen River, exceeding the 1933 Showa and 1960 Chilean tsunami inundations by factors of 6.2 and 2.7, respectively. The overland tsunami inundation distance was less than 2 km. The tsunami inundation height linearly decreased along the Kesen River at a rate of approximately 1 m/km. Nevertheless, the measured inland tsunami heights exhibit significant variations on local and regional scales. A designated “tsunami control forest” planted with a cross-shore width of about 200 m along a 2 km stretch of Rikuzentakata coastline was completely overrun and failed to protect the local community during this extreme event. Similarly, many designated tsunami shelters were too low and were overwashed by tsunami waves, thereby failing to provide shelter for evacuees—a risk that had been underestimated.


Tsunami survey historical review inundation run-up Rikuzentakata Kesen River Tohoku tsunami Showa tsunami Meiji tsunami Chilean tsunami tsunami control forest 



The post-tsunami survey was financially supported by the JST J-RAPID project through the Program of “Study on the 2011 Tohoku Tsunami propagation, tsunami nearshore behavior, and tsunami mitigation from coastal structures”. The University of Tokyo survey team (H.L., S.S. and Y.T.) was also supported by the Nippon Foundation through the program for the Basis of Marine Affairs. H.M.F. was supported by NSF RAPID award CMMI-1135768.


  1. Borrero, J.C. (2005). Field data and satellite imagery of tsunami effects in Banda Aceh. Science, 308, 1596.Google Scholar
  2. CFICT, The Committee for Field Investigation of the Chilean tsunami of 1960 (1961). Report on the Chilean Tsunami of May 24, 1960, as observed along the coast of Japan. p. 397.Google Scholar
  3. Danielsen, F., Sørensen, M.K., Olwig, M.F., Selvam, V., Parish, F., Burgess, N.D., Hiraishi, T., Karunagaran, V.M., Rasmussen, M.S., Hansen, L.B., Quarto, A. and Suryadiputra, N. (2005). The Asian tsunami: A protective role for coastal vegetation. Science, 310, 643.Google Scholar
  4. Fritz, H.M. and Kalligeris, N. (2008). Ancestral heritage saves tribes during 1 April 2007 Solomon Islands tsunami. Geophys. Res. Lett., 35, L01607, doi:10.1029/2007GL031654.
  5. Fritz, H.M., Blount, C.D., Thwin, S., Thu, M.K. and Chan, N. (2009). Cyclone Nargis storm surge in Myanmar Nature Geosci. 2(7), 448–449, doi:10.1038/ngeo558.
  6. Fritz, H.M., Petroff, C.M., Catalan, P.A., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S.E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar, R., Dominguez, J.C. and Synolakis, C.E. (2011). Field Survey of the 27 February 2010 Chile Tsunami. Pure Appl. Geophys., 168, 1989–2010.Google Scholar
  7. Fritz, H.M., Phillips, D.A., Okayasu, A., Shimozono, T., Liu, H., Mohammed, F., Skanavis, V., Synolakis, C.E. and Takahashi, T. (2012). The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys. Res. Lett., 39, L00G23, doi:10.1029/2011GL050686.
  8. Frohlich, C., Hornbach, M.J., Taylor, F.W., Shen, C.C., Moala, A., Morton, A.E. and Kruger, J. (2009). Huge erratic boulders in Tonga deposited by a prehistoric tsunami. Geology, 37(2), 131–134.Google Scholar
  9. Fujii, Y., Satake, K., Sakai, S., Shinohara, M. and Kanazawa, T. (2011). Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63, 815–820.Google Scholar
  10. Furumura, T., Imai, K. and Maeda, T. (2011). A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, Japan. J. Geophys. Res., 116, B02308, doi:10.1029/2010JB007918.
  11. Hashimoto, C., Noda, A., Sagiya, T. and Matsu’ura, M. (2009). Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nature Geosci., 2, 141–144.Google Scholar
  12. Hokkaido Tsunami Survey Group (1993). Tsunami devastates Japanese coastal region. Eos Trans. AGU, 74(37), 417–432.Google Scholar
  13. Ide, S., Baltay, A. and Beroza, G.C. (2011). Shallow dynamic overshoot and energetic deep rupture in the 2011 M w 9.0 Tohoku-Oki earthquake. Science, 332, 1426–1429.Google Scholar
  14. Imamura, F., Goto, K. and Ohkubo, S. (2008). A numerical model for the transport of a boulder by tsunami. J. Geophys. Res., 113, C01008, doi:10.1029/2007JC004170.
  15. Iwate Prefecture (1969). Reconstruction report for the Chilean earthquake tsunami, Iwate Prefecture. p. 261. [in Japanese].Google Scholar
  16. Kanamori, H. (1972). Mechanism of tsunami earthquake. Phys. Earth Planet. Interiors, 6, 346–359.Google Scholar
  17. Kanamori, H. (1977). The energy release in great earthquakes. J. Geophys. Res., 82, 2981–2987.Google Scholar
  18. Kato, Y. and Kimura M. (1983). Age and origin of so-called “Tsunami-ishi”, Ishigaki island, Okinawa prefecture. J. Geol. Soc. Jpn, 89, 471–474.Google Scholar
  19. Liu, H., Takagawa, T., Tajima, Y., Sato, S., Shimozono, T., Okayasu, A. and Fritz, H. M. (2011). A brief overview on the post-tsunami survey in the Sanriku Coast, Japan. Proceedings of the 6th Asian and Pacific Coastal Eng. Conf., APAC2011, 91–98.Google Scholar
  20. Liu, P. L.-F., Lynett, P., Fernando, H., Jaffe, B.E., Fritz, H.M., Higman, B., Morton, R., Goff, J. and Synolakis, C. (2005). Observations by the international tsunami survey team in Sri Lanka. Science, 308, 1595.Google Scholar
  21. Matsuo, H. (1933). Sanriku tsunami survey report. Rep. Publ. Works Res. Stn., 24, 83–136. [in Japanese].Google Scholar
  22. MHA (1934). Reconstruction report of the damaged city after the Sanriku tsunami. p. 164. [in Japanese].Google Scholar
  23. Mori, N., Takahashi, T. and the 2011 Tohoku Earthquake Tsunami Joint Survey Group (2012). Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coastal Eng. J., 54(1), 1250001, doi:10.1142/S0578563412500015.
  24. Munger, S. and Cheung, K.F. (2008). Resonance in Hawaii waters from the 2006 Kuril Islands tsunami. Geophys. Res. Lett., 35, L07605, doi:10.1029/2007GL032843.
  25. Nott, J. (2003). Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth and Planetary Sci. Lett., 210, 269–276.Google Scholar
  26. Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M. and Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475, 373–376.Google Scholar
  27. Plafker, G. and Savage, J.C. (1970). Mechanism of the Chilean earthquake of May 21 and 22 1960. Geol. Soc. Am. Bull., 81, 1001–1030.Google Scholar
  28. Satake, K. (2005). Tsunami: Case studies and recent developments. Springer. p. 351.Google Scholar
  29. Satake, K. and Kanamori, H. (1991). Abnormal tsunamis caused by the June 13, 1984, Torishima, Japan, Earthquake. J. Geophys. Res., 96(B12), 19933–19939.Google Scholar
  30. Sato, M. Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M. and Asada, A. (2011). Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science, 332, 1395.Google Scholar
  31. Shimozono, T., Sato, S., Okayasu, Y., Tajima, Y., Fritz, H.M., Liu, H. and Takagawa, T. (2012). Propagation and inundation characteristics of the 2011 Tohoku tsunami on the central Sanriku Coast. Coastal Eng. J., 54(1), 1250004, doi: 10.1142/S0578563412500040.
  32. Shuto, N. (1987). The effectiveness and limit of tsunami control forests. Coastal Eng. Jpn, 30(1), 143–153.Google Scholar
  33. Simons, M., Minson, S.E., Sladen, A., Ortega, F., Jiang, J., Owen, S.E., Meng, L., Ampuero, J.-P., Wei, S., Chu, R., Helmberger, D.V., Kanamori, H., Hetland, E., Moore, A.W. and Webb, F.H. (2011). The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries. Science, 332, 1421–1425.Google Scholar
  34. Tanaka, N., Sasaki, Y., Mowjood, M.I.M., Jinadasa, K.B.S.N. and Homchuen, S. (2007). Coastal vegetation structures and their functions in tsunami protection: experience of the recent Indian Ocean tsunami. Landscape Ecol. Eng., 3, 33–45.Google Scholar
  35. Tanioka, Y. and Satake, K. (1996). Fault parameters of the 1896 Sanriku Tsunami Earthquake estimated from Tsunami Numerical Modeling. Geophys. Res. Lett., 23(13), 1549–1552.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Haijiang Liu
    • 1
  • Takenori Shimozono
    • 2
  • Tomohiro Takagawa
    • 3
  • Akio Okayasu
    • 2
  • Hermann M. Fritz
    • 4
  • Shinji Sato
    • 1
  • Yoshimitsu Tajima
    • 1
  1. 1.Department of Civil EngineeringThe University of TokyoTokyoJapan
  2. 2.Department of Ocean SciencesTokyo University of Marine Science and TechnologyTokyoJapan
  3. 3.Port and Airport Research InstituteAsia-Pacific Center for Coastal Disaster ResearchYokosukaJapan
  4. 4.School of Civil and Environmental EngineeringGeorgia Institute of TechnologySavannahUSA

Personalised recommendations