Pure and Applied Geophysics

, Volume 170, Issue 9–10, pp 1475–1491 | Cite as

Near-Field Tsunami Edge Waves and Complex Earthquake Rupture

Article

Abstract

The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the Mw = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

Notes

Acknowledgments

The author gratefully acknowledges the constructive comments of Tom Parsons and two anonymous reviewers, as well as discussions with Bob Morton and Guy Gelfenbaum regarding field observations of the 2010 Chile tsunami.

References

  1. Abe, K., and H. Ishii (1987), Distribution of maximum water levels due to the Japan Sea tsunami on 26 May 1983, Journal of the Oceanographical Society of Japan, 43, 169-182.Google Scholar
  2. Andrews, D. J. (1980), A stochastic fault model 1. Static case, J. Geophys. Res., 85, 3867-3877.Google Scholar
  3. Andrews, D. J., and M. Barall (2011), Specifying initial stress for dynamic heterogeneous earthquake source models, Bull. Seismol. Soc. Am., 101, 2408-2417.Google Scholar
  4. Bürgmann, R., M. G. Kogan, G. M. Steblov, G. Hilley, V. E. Levin, and E. Apel (2005), Interseismic coupling and asperity distribution along the Kamchatka subduction zone, J. Geophys. Res., 110, doi:10.1029/2005JB003648.
  5. Carrier, G. F. (1995), On-shelf tsunami generation and coastal propagation, in Tsunami: Progress in Prediction, Disaster Prevention and Warning, edited by Y. Tsuchiya and N. Shuto, pp. 1-20, Kluwer, Dordrecht, The Netherlands.Google Scholar
  6. Dingemans, M. W. (1997), Water Wave Propagation Over Uneven Bottoms: Part 1 - Linear Wave Propagation, 471 pp., World Scientific, Singapore.Google Scholar
  7. Dmowska, R., and B. V. Kostrov (1973), A shearing crack in a semi-space under plane strain conditions, Archives of Mechanics, 25, 421-440.Google Scholar
  8. Dmowska, R., and J. R. Rice (1986), Fracture theory and its seismological applications, in Continuum Theories in Solid Earth Physics, edited by R. Teisseyre, pp. 187-255, PWN-Polish Scientific Publishers, Warsaw.Google Scholar
  9. Fritz, H. M., et al. (2011), Field survey of the 27 February 2010 Chile tsunami, Pure Appl. Geophys. 168, 1989–2010Google Scholar
  10. Fujima, K., R. Dozono, and T. Shigemura (2000), Generation and propagation of tsunami accompanying edge waves on a uniform shelf, Coastal Engineering Journal, 42, 211-236.Google Scholar
  11. Geist, E. L. (2002), Complex earthquake rupture and local tsunamis, J. Geophys. Res., 107, doi:10.1029/2000JB000139.
  12. Geist, E. L. (2009), Phenomenology of tsunamis: Statistical properties from generation to runup, Adv. Geophys., 51, 107-169.Google Scholar
  13. Geist, E. L., and R. Dmowska (1999), Local tsunamis and distributed slip at the source, Pure Appl. Geophys., 154, 485-512.Google Scholar
  14. Golovachev, E. V., I. E. Kochergin, and E. N. Pelinovsky (1992), The effect of the Airy phase during propagation of edge waves, Soviet Journal of Physical Oceanography, 3, 1-7.Google Scholar
  15. Hartzell, S. H., and T. H. Heaton (1985), Teleseismic time functions for large, shallow, subduction zone earthquakes, Bull. Seismol. Soc. Am., 75, 965-1004.Google Scholar
  16. Hasselmann, K. (1966), Feynamn diagrams and interaction rules of wave–wave scattering processes, Reviews of Geophysics, 4, 1-32.Google Scholar
  17. Herrero, A., and P. Bernard (1994), A kinematic self-similar rupture process for earthquakes, Bull. Seismol. Soc. Am., 84, 1216-1228.Google Scholar
  18. Ishii, H., and K. Abe (1980), Propagation of tsunami on a linear slope between two flat regions. Part I edge wave, Journal of Physics of the Earth, 28, 531-541.Google Scholar
  19. Johnson, J. M., and K. Satake (1999), Asperity distribution of the 1952 Great Kamchatka earthquake and its relation to future earthquake potential in Kamchatka, Pure Appl. Geophys., 154, 541-553.Google Scholar
  20. Kajiura, K. (1972), The directivity of energy radiation of the tsunami generated in the vicinity of a continental shelf, Journal of the Oceanographical Society of Japan, 28, 260-277.Google Scholar
  21. Kenyon, K. E. (1970), A note on conservative edge wave interactions, Deep-Sea Research, 17, 197-201.Google Scholar
  22. Kirby, J. T., U. Putrevu, and H. T. Özkan-Haller (1998), Evolution equations for edge waves and shear waves on longshore uniform beaches, in Proceedings of 26th International Conference on Coastal Engineering, edited, pp. 203-216, ASCE, Copenhagen, Denmark.Google Scholar
  23. Kiser, E., and M. Ishii (2011), The 2010 Mw 8.8 Chile earthquake: Triggering on multiple segments and frequency-dependent rupture behavior, Geophys. Res. Lett., 38, doi:10.1029/2011GL047140.
  24. Koshimura, S., F. Imamura, and N. Shuto (1999), Propagation of obliquely incident tsunamis on a slope Part I: Amplification of tsunamis on a continental slope, Coastal Engineering Journal, 41, 151-164.Google Scholar
  25. Koyama, J. (1994), General description of the complex faulting process and some empirical relations in seismology, Journal of Physics of the Earth, 42, 103-148.Google Scholar
  26. Kurkin, A., and E. Pelinovsky (2002), Focusing of edge waves above a sloping beach, European Journal of Mechanics B/Fluids, 21, 561-577.Google Scholar
  27. Lavallée, D., and R. J. Archuleta (2003), Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California, earthquake, Geophys. Res. Lett., 30, doi:10.1029/2002GL015839.
  28. Lavallée, D., P. Liu, and R. J. Archuleta (2006), Stochastic model of heterogeneity in earthquake slip spatial distributions, Geophys. J. Int., 165, 622-640.Google Scholar
  29. Lay, T., C. J. Ammon, H. Kanamori, K. D. Koper, O. Sufri, and A. R. Hutko (2010), Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake, Geophys. Res. Lett., 37, doi:10.1029/2010GL043379.
  30. LeBlond, P. H., and L. A. Mysak (1978), Waves in the Ocean, 602 pp., Elsevier, Amseterdam.Google Scholar
  31. Liu, P. L. F., H. Yeh, P. Lin, K. T. Chang, and Y. S. Cho (1998), Generation and evolution of edge-wave packets, Physics of Fluids, 10, 1635-1657.Google Scholar
  32. Luttrell, K. M., X. Tong, D. T. Sandwell, B. A. Brooks, and M. G. Bevis (2011), Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength, J. Geophys. Res., 116, doi:10.1029/2011JB008509.
  33. Lynett, P. J., and P. L.-F. Liu (2005), A numerical study of run-up generated by three-dimensional landslides, J. Geophys. Res., 10, doi:10.1029/2004JC002443.
  34. MacInnes, B. T., R. Weiss, J. Bourgeois, and T. K. Pinegina (2010), Slip distribution of the 1952 Kamchatka great earthquake based on near-field tsunami deposits and historical records, Bull. Seismol. Soc. Am., 100, 1695-1709.Google Scholar
  35. Mai, P. M., and G. C. Beroza (2000), Source scaling properties from finite-fault-rupture models, Bull. Seismol. Soc. Am., 90, 604-615.Google Scholar
  36. Mai, P. M., and G. C. Beroza (2002), A spatial random field model to characterize complexity in earthquake slip, J. Geophys. Res., 107, doi:10.1029/2001JB000588.
  37. McCloskey, J., A. Antonioli, A. Piatanesi, K. Sieh, S. Steacy, S. S. Nalbant, M. Cocco, C. Giunchi, J. D. Huang, and P. Dunlop (2007), Near-field propagation of tsunamis from megathrust earthquakes, Geophys. Res. Lett., 34, doi:10.1029/2007GL030494.
  38. McCloskey, J., A. Antonioli, A. Piatanesi, K. Sieh, S. Steacy, S. Nalbant, M. Cocco, C. Giunchi, J. Huang, and P. Dunlop (2008), Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra, Earth Planet. Sci. Lett., 265, 61-81.Google Scholar
  39. Mei, C. C., M. Stiassnie, and D. K.-P. Yue (2005), Theory and applications of ocean surface waves. Part 1: Linear aspects, 513 pp., World Scientific, Singpore.Google Scholar
  40. Momoi, T. (1964), Tsunami in the vicinity of a wave origin [I], Bulletin of the Earthquake Research Institute, 42, 133-146.Google Scholar
  41. Morse, P. M., and H. Feshbach (1953), Methods of Theoretical Physics, Part I, 997 pp., McGraw-Hill, New York.Google Scholar
  42. Morton, R. A., G. Gelfenbaum, M. L. Buckley, and B. M. Richmond (2011), Geological effects and implications of the 2010 tsunami along the central coast of Chile, Sedimentary Geology, 242, 34-51.Google Scholar
  43. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135-1154.Google Scholar
  44. Pierce, R. D., and E. Knobloch (1994), Evolution equations for counterpropagating edge waves, Journal of Fluid Mechanics, 264, 137-163.Google Scholar
  45. Polet, J., and H. Kanamori (2000), Shallow subduction zone earthquakes and their tsunamigenic potential, Geophys. J. Int., 142, 684-702.Google Scholar
  46. Pollitz, F. F., et al. (2011), Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake, Geophys. Res. Lett., 38, doi:10.1029/2011GL047065.
  47. Rabinovich, A. B., L. I. Lobkovsky, I. V. Fine, R. E. Thomson, T. N. Ivelskaya, and E. A. Kulikov (2008), Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007, Advances in Geosciences, 14, 105-116.Google Scholar
  48. Rice, J. R. (1980), The mechanics of earthquake rupture, in Physics of the Earth’s Interior, edited by A. M. Dziewonski and E. Boschi, pp. 555-649, North Holland Publishing Company.Google Scholar
  49. Rudnicki, J. W., and M. Wu (1995), Mechanics of dip-slip faulting in an elastic half-space, J. Geophys. Res., 100, 22,173-22186.Google Scholar
  50. Samorodnitsky, G., and M. S. Taqqu (1994), Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, 632 pp., Chapman & Hall/CRC Press, Boca Raton, Florida.Google Scholar
  51. Tadepalli, S., and C. E. Synolakis (1996), Model for the leading waves of tsunamis, Physical Review Letters, 77, 2141-2144.Google Scholar
  52. Tanioka, Y., and K. Satake (1996), Tsunami generation by horizontal displacement of ocean bottom, Geophys. Res. Lett., 23, 861-865.Google Scholar
  53. Tsai, C. P. (1997), Slip, stress drop and ground motion of earthquakes: A view from the perspective of fractional Brownian motion, Pure Appl. Geophys., 149, 689-706.Google Scholar
  54. Ursell, F. (1952), Edge waves on a sloping beach, Proc. R. Soc. Lond. A, 214, 79-97.Google Scholar
  55. Wu, T. Y. (1981), Long waves in ocean and coastal waters, Journal of the Engineering Mechanics Division, ASCE, 107, 501-522.Google Scholar
  56. Yamazaki, Y., and K. F. Cheung (2011), Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake, Geophys. Res. Lett., 38, doi:10.1029/2011GL047508.

Copyright information

© Springer Basel (outside the USA) 2012

Authors and Affiliations

  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations