Pure and Applied Geophysics

, Volume 170, Issue 5, pp 797–814 | Cite as

Study of Local Seismic Events in Lithuania and Adjacent Areas Using Data from the PASSEQ Experiment

  • Ilma Janutyte
  • Elena Kozlovskaya
  • Gediminas Motuza
  • PASSEQ Working Group
Article

Abstract

The territory of Lithuania and adjacent areas of the East European Craton have always been considered a region of low seismicity. Two recent earthquakes with magnitudes of more than 5 in the Kaliningrad District (Russian Federation) on 21 September 2004 motivated re-evaluation of the seismic hazard in Lithuania and adjacent territories. A new opportunity to study seismicity in the region is provided by the PASSEQ (Pasive Seismic Experiment) project that aimed to study the lithosphere–asthenosphere structure around the Trans-European Suture Zone. Twenty-six seismic stations of the PASSEQ temporary seismic array were installed in the territory of Lithuania. The stations recorded a number of local and regional seismic events originating from Lithuania and adjacent areas. This data can be used to answer the question of whether there exist seismically active tectonic zones in Lithuania that could be potentially hazardous for critical industrial facilities. Therefore, the aim of this paper is to find any natural tectonic seismic events in Lithuania and to obtain more general view of seismicity in the region. In order to do this, we make a manual review of the continuous data recorded by the PASSEQ seismic stations in Lithuania. From the good quality data, we select and relocate 45 local seismic events using the well-known LocSAT and VELEST location algortithms. In order to discriminate between possible natural events, underwater explosions and on-shore blasts, we analyse spatial distribution of epicenters and temporal distribution of origin times and perform both visual analysis of waveforms and spectral analysis of recordings. We show that the relocated seismic events can be grouped into five clusters (groups) according to their epicenter coordinates and origin and that several seismic events might be of tectonic origin. We also show that several events from the off-shore region in the Baltic Sea (at the coasts of the Kaliningrad District of the Russian Federation) are non-volcanic tremors, although the origin of these tremor-type events is not clear.

Keywords

Location of local seismic events East European Craton PASSEQ passive seismic experiment spectral analysis of seismic waves seismicity in the Baltic States seismicity in Lithuania 

References

  1. Ankundinov, C., Brio, H., Sadov, A. (1987), Deep structure of the Earth’s crust in the territory of the Baltic countries on the basis of DSS studies. Belorussian seismological Bulletin. Minsk: 110–117. (In Russian).Google Scholar
  2. Ankundinov, C., Sadov, A., Brio, H. (1994), Crustal structure of Baltic countries on the basis of deep seismic sounding data. Proc. Estonian Acad. Sci. V 43:129–136 (In Russian).Google Scholar
  3. Baumgardt, D. R., and Young, G. B. (1990), Regional seismic waveform discriminants and case-based event identification using regional arrays. Bull Seism Soc Am, 88, 581–595.Google Scholar
  4. Baumgardt, D. R., and Der, Z. (1998), Identification of Presumed Shallow Underwater Chemical Explosions Using Land-Based Regional Arrays. Bull Seism Soc Am, 80, 1874–1892.Google Scholar
  5. Boborykin, A. M., Garetsky, R. G., Emelianov, A. P., Sildvee, H. H., Suveizdis, P. I. (1993), Earthquakes of Belarus and Baltic region. Current state of seismological observations and their generalization. In: Methodological Proceedings of Unified System of Seismological Observations N 4. Academy of Sciences Belarus, pp. 29–39.Google Scholar
  6. Bratt, S. R., and Bache, T. C. (1988), Locating Events with a Sparse Network of Regional Arrays. Bulletin of the Seismological Society of America 78, 780–798.Google Scholar
  7. Dangel, S., Schaepman, M. E., Stoll, E. P., Carniel, R., Barzandji, O., Rode, E. D., and Singer, J. M. (2003), Phenomenology of tremor-like signals observed over hydrocarbon reservoirs. Journal of Volcanology and Geothermal Research, V. 128, p. 135–158Google Scholar
  8. Glitterman, Y., and van Eck, T. (1993), Spectra of quarry blasts and microearthquakes recorded at local distances in Israel. Bull Seism Soc Am, 83, 6, 1799–1812.Google Scholar
  9. Glitterman, Y., and Shapira, A. (1994), Spectral characteristics of seismic events off the coast of the Levant. Geoph J Int, 116, 2, 485–497.Google Scholar
  10. Glitterman, Y., and Shapira, A. (1998), Spectral classification methods in monitoring small local events by the Israel seismic network, Journal of seismology, 2, 237–256.Google Scholar
  11. Glitterman, Y., Ben-Avraham, Z., Ginzburg, A. (1998), Spectral analysis of underwater explosions. Geoph J Int, 134, 460–472.Google Scholar
  12. Gregersen, S., Voss, P. and TOR working group (2002), Summary of project TOR: delineation of a stepwise, sharp, deep lithosphere transition across Germany–Denmark–Sweden. Tectonics, 360, 61–73.Google Scholar
  13. Janik, T., Kozlovskaya, E., and Yliniemi, J. (2007), Crust-mantle boundary in the central Fennoscandian shield: constraints from wide-angle P- and S-wave velocity models and new results of reflection profiling in Finland. J. Geophys. Res. 112, B04302. doi:10.1029/2006JB004681
  14. Kennett, B. L. N., and E. R. Engdahl (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International 122, 429–465.Google Scholar
  15. Kissling, E. (1988), Geotomography with Local Earthquake Data, Rev. of Geophysics. 26, 659–698Google Scholar
  16. Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., Kradolfer, U. (1994), Initial Reference Models in Local Earthquake Ttomography, J. Geophys. Res., 99, 19, 635–646.Google Scholar
  17. Kissling, E., Kradolfer, U., Maurer, H. (1995), Program VELEST User’s Guide—Short Introduction, Institute of Geophysics, ETH Zuerich, Second draft version.Google Scholar
  18. Kovachev, S. A. (2008), Results of Seismological Observations in the Western Kaliningrad Region and the Baltic Sea Water Area, Physics of the Solid Earth, 44, 9, 706–716.Google Scholar
  19. Kozlovskaya, E., Karatayev, G., Yliniemi, J. (2001), Lithosphere structure along the northern part of EUROBRIDGE in Lithuania; results from integrated interpretation of DSS and gravity data. Tectonophysics, 339, 177–191 Google Scholar
  20. Menke, W. (1989), Geophysical data analysis: discrete inverse theory. Academic Press, New York, pp 289Google Scholar
  21. Motuza, G. (2004), Žemės plutos bei kristalinio pamato sandaros ir sudėties raida. In: Baltrūnas, V. (ed.), Lietuvos žemės gelmių raida ir ištekliai, UAB Petro ofsetas, Vilnius, pp 11–40.Google Scholar
  22. Motuza, G. (2005), Structure and formation of the crystalline crust in Lithuania. Polskie Towarzystwo Mineralogiczne–Prace specjalne Mineralogical Society of Poland–Special Papers, vol. 26, 69–79.Google Scholar
  23. Nadeau, R. M. and Dolenc, D., (2005), Nonvolcanic Tremors Deep Beneath the San Andreas Fault, Science, 307, 389.Google Scholar
  24. Pačėsa, A., Šliaupa, S., Satkūnas, J. (2005), Naujausi žemės drebėjimai Baltijos regione ir Lietuvos seisminis monitoringas, Geologija, 50, 8–18.Google Scholar
  25. Raffaele, R., Fourno, J. P., Gresta, S. (2004), Minimum 1D Velocity Model from Local Earthquake Data in the Provence Region, South-Eastern France, Stud. Geophys. Geod., 48, 731–740.Google Scholar
  26. Yliniemi, J., Tiira, T., Luosto, U., Komminaho, K., Motuza, G., Nasedkin, V., Jacyna, J., Šečkus, R., Grad, M., Czuba, W., Janik, T., Guterch, A., Lund, C.-E., Doody, J. J., EUROBRIDGE’95 seismic working group (2001), EUROBRIDGE’95: Deep Seismic Profiling within the East European Craton, Tectonophysics, 339, 1–2, 153–175.Google Scholar
  27. Walter, W. R., Mayeda, K., and Patton, H. J. (1995), Phase and spectral ratio discrimination between NTS earthquakes and explosions Part 1: Empirical observations. Seism. Soc. Am., 85Google Scholar
  28. Wessel, P. and Smith, W. H. F. (1995), New version of generic mapping tools released, Eos Trans, AGU, 76, 329Google Scholar
  29. Wilde-Piórko, M., Geissler, W.H., Plomerová, J., Grad, M., Babuška, V., Brückl, E., Čyžienė, J., Czuba, W., Eengland, R., Gaczyński, E., Gazdova, R., Gregersen, S., Guterch, A., Hanka, W., Hegedűs, E., Heuer, B., Jedlička, P., Lazauskienė, J., Randy Keller, G., Kind, R., Klinge, K., Kolinsky, P., Komminaho, K., Kozlovskaya, E., Krűger, F., Larsen, T., Majdański, M., Málek, J., Motuza, G., Novotný, O., Pietrasiak, R., Plenefish, Th., Rŭžek, B., Šliaupa, S., Środa, P., Świeczak, M., Tiira, T., Voss, P., Wiejacz, P. (2008), PASSEQ 2006–2008: PASsive Seismic Experiment in Trans-European Suture Zone, Stud. Geophys. Geod., 52, 439–448.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Ilma Janutyte
    • 1
    • 3
  • Elena Kozlovskaya
    • 2
  • Gediminas Motuza
    • 1
  • PASSEQ Working Group
  1. 1.Division of Geology and MineralogyVilnius UniversityVilniusLithuania
  2. 2.Sodankylä Geophysical Observatory/Oulu UnitUniversity of OuluOuluFinland
  3. 3.Division of Bedrock GeologyLithuanian Geological SurveyVilniusLithuania

Personalised recommendations