Pure and Applied Geophysics

, Volume 169, Issue 10, pp 1875–1889 | Cite as

Quantification of the Mass Flux of H2O Gas (Steam) at Three Active Volcanoes Using Thermal Infrared Imagery

  • J. B. Witter
  • P. HernandezEmail author
  • A. J. L. Harris
  • N. Pérez


We apply a measurement technique that utilizes thermal video of vapor-dominated volcanic plumes to estimate the H2O gas flux at three degassing volcanoes. Results are compared with H2O flux measurements obtained using other methods to verify the thermal camera-derived values. Our estimation of the H2O emission rate is based on the mass and energy conservation equations. H2O flux is quantified by extracting the temperature and width of the gas plume from the thermal images, calculating the transit velocity of the gas plume from the thermal video, and combining these results with atmospheric parameters measured on-site. These data are then input into the equations for conservation of mass and energy. Selected volcanoes for this study were Villarrica in Chile, Stromboli in Italy, and Santa Ana in El Salvador. H2O fluxes estimated from the thermal imagery were 38–250 kg s−1 at Villarrica, 4.5–14 kg s−1 for Stromboli’s Central Crater, and 168–219 kg s−1 at Santa Ana. These compare with H2O flux values estimated by other methods of 73–220, 3–70 and 266 kg s−1, at the three volcanoes, respectively. The good agreement between thermal image-derived results and those estimated by other methods seem to validate this method.


Mass flux H2O gas infrared thermal imagery Santa Ana villarica Stromboli volcano monitoring 



Field work at Santa Ana volcano was carried out thanks to assistance of the Office of the Spanish Agency for International Cooperation (AECI) in El Salvador, the Spanish Embassy in El Salvador and the staff of the Instituto de Ciencias de la Tierra, University of El Salvador, especially to Francisco Barahona and Carlos Hernández. We are indebted to the GRP of El Salvador’s Civil National Police for providing security during our stay in El Salvador. Santa Ana field work research was mainly supported by the Spanish Aid Agency (Agencia Española de Cooperación Internacional—AECI), and additional financial-aid was provided by the Cabildo Insular de Tenerife, Canary Islands, Spain. We thank Mike Burton for sharing the SO2 flux data he collected at Villarrica in November 2004. We also thank Matt Patrick for collecting the thermal imagery at Stromboli and Villarrica, where work was supported by NSF grants EAR-0207734 and EAR-0106349. We thank Y. Taran and two anonymous reviewers for their constructive comments that improved the manuscript.


  1. Aiuppa, A., Federico, C., Paonita, A., Giudice, G., and Valenza, M., (2002). S, Cl and F degassing as an indicator of volcanic dynamics: The 2001eruption of Mount Etna, Geophys. Res. Lett. 29(11):1556, doi: 10.1029/2002GL015032.
  2. Allard, P., Carbonelle, J., Metrich, N., Loyer, H., and Zetwoog, P., (1994). Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330.Google Scholar
  3. Bukumirovic, T., Italiano, F., Nuccio, P.M., (1997). The evolution of a dynamic geological system: the support of a GIS for geochemical measurements at the fumarole field of Vulcano, Italy. J. Volcanol. Geotherm. Res. 79:253–263.Google Scholar
  4. Burton, M.R., Oppenheimer, O., Horrocks, L.A., and Francis, P.W., (2000). Remote sensing of CO 2 and H 2 O emission rates from Masaya volcano. Geology. 28:915–918. doi:  10.1130/0091-7613(2000)028<0915:RSOCAH>2.3.CO;2.
  5. Burton, M. R., Allard, P., Mure, F., and Oppenheimer, C., (2003). FTIR remote sensing of fractional magma degassing at Mount Etna, Sicily, in Volcanic Degassing, edited by C. Oppenheimer, D. Pyle, and J. Barclay, Geol. Soc. London Spec. Pub. 213:281–293.Google Scholar
  6. Fukui, K., (1995). H 2 O and heat discharged from Aso volcano in Noneruptive stage. Bull. Volcanol. Soc. Japan. 40:233–248.Google Scholar
  7. Galle, B., Oppenheimer, C., Geyer, A., McGonigle, A.J.S., Edmonds, M., and Horrocks, L., (2002). A miniaturized ultraviolet spectrometer for remote sensing of SO 2 fluxes: a new tool for volcano surveillance. J. Volcanol. Geotherm. Res. 119:241–254.Google Scholar
  8. Goff, J.A., and Gratch, S., (1946). Low-pressure properties of water from −160 to 212°F, in Transactions of the American Society of Heating and Ventilating Engineers, presented at the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, pp 95–122.Google Scholar
  9. Goff, J. A., (1957). Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers, presented at the semi-annual meeting of the American Society of Heating and Ventilating Engineers, Murray Bay, Que. Canada, pp 347–354Google Scholar
  10. Gurioli, L., Harris, A.J.L., Houghton, B.F., Polacci, M., and Ripepe, M., (2008). Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J. Geophys. Res. 113, B08206, doi: 10.1029/2007JB005328.
  11. Harris, A., and Ripepe M. (2007). Temperature and dynamics of degassing at Stromboli. J. Geophys. Res. 112, B03205, doi: 10.1029/2006JB004393.
  12. Horton, K.A., Williams-Jones, G., Garbeil, H., Elias, T., Sutton, A.J., Mouginis-Mark, P., Porter, J.N., and Clegg, S., (2006). Real-time measurement of volcanic SO 2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). Bull. Volcanol. 68:323–327.Google Scholar
  13. Italiano, F., Nuccio, P.M. (1992). Fumarolic steam output directly measured in fumaroles: Vulcano (Aeolian Islands, Italy) between 1983 and 1987. Bull. Volcanol. 54:623–630.Google Scholar
  14. Italiano, F., Pecoraino, G., and Nuccio, P.M., (1998) Steam output from fumaroles of an active volcano: Tectonic and magmatic-hydrothermal controls on the degassing system at Vulcano (Aeolian arc). J. Geophys. Res. 103, B12:29,829–29,842.Google Scholar
  15. Jinguuji, M., and Ehara, S., (1996). Estimation of steam and heat discharge of volcanic steam, Japan. Bull. Volcanol. Soc. Jpn. 41:23–29.Google Scholar
  16. Kagiyama, T., (1978). Evaluation of heat discharge and H 2 O emission from volcanoes based on a plume rise assumption. Bull. Volcanol. Soc. Jpn. 23:183–197 (in Japanese with English abstract).Google Scholar
  17. Kazahaya, K., Shinohara, H., and Saito, G., (1994). Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull. Volcanol. 56:207–216.Google Scholar
  18. Matsushima, N., Kazahaya, K., Saito, G., and Shinohara, H., (2003). Mass and heat flux of volcanic gas discharging from the summit crater of Iwodate volcano, Satsuma Iwojima, Japan, during 1996–1999. J. Volcanol. Geotherm. Res. 126:285–301.Google Scholar
  19. Matsushima, N. and Shinohara, H., (2006) Visible and invisible volcanic plumes. Geophys. Res. Lett., 33, L24309, doi: 10.1029/2006GL026506.
  20. Matsushima, N., (2005). H 2 O emission rate by the volcanic plume during the 2000–2002 Miyakejima volcanic activity. Geophys. Res. Lett. 32, L14307, doi: 10.1029/2005GL023217.
  21. McGonigle, A.J.S., Oppenheimer, C., Hayes, A.R., Galle, B., Edmonds, M., Caltabiano, T., Salerno, G., Burton, M., Mather, T.A., (2002). Sulphur dioxide fluxes from Mount Etna, Vulcano, and Stromboli measured with an automated scanning ultraviolet spectrometer. J. Geophys. Res. 108(B9):245, doi: 10.1029/2002JB002261.
  22. Morton, B.R., Taylor, G.I., Turner, J.S., (1956). Turbulent gravitational convection from maintained and gravitational sources. Proc. R. Soc. A234:1–23.Google Scholar
  23. Palma, J.L., Calder, E.S., Basualto, D., Blake, S., Rothery, D.A., (2008). Correlations between SO 2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile. J. Geophys. Res. 113, B10201, doi: 10.1029/2008JB005577.
  24. Shinohara, H., Kazahaya, K., Saito, G., Matsushima, N. and Kawanabe, Y., (2002). Degassing activity from Iwodake rhyolitic cone, Satsuma-Iwojima volcano, Japan: Formation of a new degassing vent, 1990–1999. Earth Planets Space. 54:175–185.Google Scholar
  25. Shinohara, H., (2005). A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. J. Volcanol. Geotherm. Res. 143(4): 319–333.Google Scholar
  26. Shinohara, H., and Witter, J.B., (2005). Volcanic gases emitted during mild Strombolian activity of Villarrica volcano, Chile. Geophys. Res. Lett. 32, L20308, doi:  10.1029/2005GL024131.
  27. Stevenson, J.A. and Varley, N., (2008) Monitoring of fumaroles with a hand-held infrared camera at Volcán de Colima, Mexico, 2006–2007. J. Volcanol. Geotherm. Res. 177:911–924.Google Scholar
  28. Stoiber, R.E., Jepsen, A., (1973). Sulfur dioxide contributions to the atmosphere by volcanoes. Science. 182:577–578.Google Scholar
  29. Stoiber, R.E., Malinconico, L.L.,Williams, S.N., (1983). Use of the correlation spectrometer at volcanoes. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, Amsterdam, pp 425–444.Google Scholar
  30. Symonds, R., Rose, W., Bluth, G., and Gerlach, T., (1994). Volcanic -gas studies: Methods, results, and applications in Volatiles in Magmas, MR Carroll and JR Holloway, eds., Reviews in Mineralogy, Vol. 30; Mineralogical Society of America, Washington, D.C.Google Scholar
  31. Witter, J. B., Kress, V.C., Delmelle, P., and Stix, J., (2004). Volatile degassing, petrology, and magma dynamics of the Villarrica Lava Lake, southern Chile. J. Volcanol. Geotherm. Res. 134: 303–337.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • J. B. Witter
    • 1
    • 5
  • P. Hernandez
    • 2
    • 3
    Email author
  • A. J. L. Harris
    • 4
  • N. Pérez
    • 2
    • 3
  1. 1.Hawai’i Institute of Geophysics and PlanetologyUniversity of Hawai’i at ManoaHonoluluUSA
  2. 2.Environmental Research DivisionInstituto Tecnologico y de Energias Renovables, ITERTenerifeSpain
  3. 3.Instituto Volcanológico de Canarias, INVOLCANPuerto de La Cruz, TenerifeSpain
  4. 4.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont FerrandFrance
  5. 5.SJ GeophysicsDeltaCanada

Personalised recommendations