Advertisement

Pure and Applied Geophysics

, Volume 170, Issue 1–2, pp 221–228 | Cite as

Aftershock Statistics of the 1999 Chi–Chi, Taiwan Earthquake and the Concept of Omori Times

  • Ya-Ting Lee
  • Donald L. Turcotte
  • John B. Rundle
  • Chien-Chih Chen
Article

Abstract

In this paper we consider the statistics of the aftershock sequence of the m = 7.65 20 September 1999 Chi–Chi, Taiwan earthquake. We first consider the frequency-magnitude statistics. We find good agreement with Gutenberg–Richter scaling but find that the aftershock level is anomalously high. This level is quantified using the difference in magnitude between the main shock and the largest inferred aftershock \( {{\Updelta}}m^{ *}. \) Typically, \( {{\Updelta}}m^{ *} \) is in the range 0.8–1.5, but for the Chi–Chi earthquake the value is \( {{\Updelta}}m^{ *} \) = 0.03. We suggest that this may be due to an aseismic slow-earthquake component of rupture. We next consider the decay rate of aftershock activity following the earthquake. The rates are well approximated by the modified Omori’s law. We show that the distribution of interoccurrence times between aftershocks follow a nonhomogeneous Poisson process. We introduce the concept of Omori times to study the merging of the aftershock activity with the background seismicity. The Omori time is defined to be the mean interoccurrence time over a fixed number of aftershocks.

Keywords

Earthquakes aftershocks Omori times interoccurrence times 

References

  1. Båth M. (1965), Lateral inhomogeneities in the upper mantle, Tectonophysics, 2, 483–514.Google Scholar
  2. Chang C.H., Wu Y.M., Zhao L., and Wu F. T. (2007), Aftershocks of the 1999 ChiChi, Taiwan, Earthquake: The First Hour, Bull. Seismol. Soc. Am., 97, No. 4, 1245–1258.Google Scholar
  3. Christensen K., and Moloney N.R., (2005), Complexity and Criticality, Imperial College Press London Inc., London.Google Scholar
  4. Console R., Lombardi A. M., Murru M., and Rhoades D. (2003), Båth’s law and the self-similarity of earthquakes, J. Geophys. Res., 108, 2128, doi: 10.1029/2001JB001651.
  5. Das S., and Scholz C. H. (1981), Theory of time-dependent rupture in the Earth, J. Geophys. Res., 86, 6039–6051.Google Scholar
  6. Felzer K.R., Becker T.W., Abercrombie R.E., Ekstrom G., and Rice J.R. (2002), Triggering of the 1999 m w 7.1 Hector Mine earthquake by aftershocks of the 1992 m w 7.3 Landers earthquake, J. Geophys. Res., 107, 2190, doi: 10.1029/2001JB000911.
  7. Felzer K. R., Abercrombie R. E., and Ekstrom G. (2003), Secondary aftershocks and their importance for aftershock forecasting, Bull. Seism. Soc. Am., 93, 1433–1448.Google Scholar
  8. Gutenberg B., and Richter C.F. (1954), Seismicity of the Earth and Associated Phenomenon, Second ed., Princeton University Press, Princeton, N.J.Google Scholar
  9. Helmstetter A., and Sornette D. (2003), Båth’s law derived from the Gutenberg-Richter law and from aftershock properties, Geophys. Res. Lett., 30, 2069 doi: 10.1029/2003GL018186.
  10. Kisslinger C and Jones L.M. (1991), Properties of aftershock sequences in southern California, Journal of Geophysical Research., 96(B7), 11947–11958.Google Scholar
  11. Kisslinger C. (1996), Aftershocks and fault-zone properties, Advances in Geophysics, 38, Academic Press, San Diego, 1–36.Google Scholar
  12. Main I.G. (2000), A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences. Geophysical Jounal International, 142 (1), 151–161.Google Scholar
  13. Nanjo K.Z., Enescu B., Shcherbakov R., Turcotte D. L., Iwata T., and Ogata Y. (2007), Decay of aftershock activity for Japanese earthquake J. Geophys. Res., 112(B8), B08309, doi: 10.1029/2006JB004754.
  14. Ojala I.O., Ngwenya R.S., Main I.G., and Elphick S.C. (2003), Correlation of microseismic and chemical properties of brittle defornation in locharbriggs sandstone, J. Geophys. Res., 108(B5), 2268–2280.Google Scholar
  15. Omori F. (1894) On the aftershocks of earthquakes, Journal of the College of Science, Imperial University of Tokyo, 7, 111–200.Google Scholar
  16. Rundle J.B. (1989), A physical model for earthquake.3: Thermodynamic approach and its relation to nonclassical theories of nucleation, J. Geophys. Res., 94(B3), 2839–2855.Google Scholar
  17. Rundle J.B., Klein W. (1993), Scaling and critical phenomena in a cellular automation slider-block model for earthquakes, Journal of statistical Physics, 72, (1–2), 405–412.Google Scholar
  18. Rundle J.B., Klein W, and Gross S. (1999), Physical basis for statistical patterns in complex earthquake population: Models, predictions and tests, Pure and Applied Geophysics, 155(2–4), 575–607.Google Scholar
  19. Shaw B.E. (1993), Generalized Omori law for aftershiocks and forshocks from a simple dynamics, Geophys. Res. Lett., 20, (10): 907–910.Google Scholar
  20. Shcherbakov R., and Turcotte D. L. (2004), A modified form of Båth’s law, Bull. Seism. Soc. Am., 94, 1968–1975.Google Scholar
  21. Shcherbakov R., Turcotte D. L., and Rundle J. B. (2004), A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613 doi: 10.1029/2004GL019808.
  22. Shcherbakov R., Yakovlev G., Turcotte D. L., and Rundle J. B. (2005), Model for the distribution of aftershock interoccurrence times, Phys. Rev. Lett., 95, doi: 10.1103/PhysRevLett.95.218501.
  23. Shcherbakov R., Turcotte D. L., and Rundle J. B. (2006), Scaling properties of the Parkfield aftershock sequence, Bull. Seismol. Soc. Am., 69, S376–S384.Google Scholar
  24. Tsapanos T.M. (1990), Spatial-distribution of the difference between the magnitude of the mainshock and the largest aftershock in the Circum-Pacific belt, Bull. Seism. Soc. Am., 80(5), 1180–1189.Google Scholar
  25. Turcotte D.L., Shcherbakov R., and Rundle J.B. (2007), Complexity and earthquakes in Treatise on Geophysics, G. Schubert, ed. Vol. 4, 675–700, Elsevier, Oxford.Google Scholar
  26. Utsu T. (1961), A statistical study on the occurrence of aftershocks, Geophys. Mag., 30, 521–605.Google Scholar
  27. Vere-Jones D. (1969). A note on the statistical interpretation of Båth’s law, Bull. Seism. Soc. Am., 59, 1535–1541.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Ya-Ting Lee
    • 1
    • 2
  • Donald L. Turcotte
    • 1
  • John B. Rundle
    • 1
    • 3
  • Chien-Chih Chen
    • 2
  1. 1.Department of GeologyUniversity of CaliforniaDavisUSA
  2. 2.Graduate Institute of GeophysicsNational Central UniversityJhongliTaiwan, ROC
  3. 3.Department of PhysicsUniversity of CaliforniaDavisUSA

Personalised recommendations