Pure and Applied Geophysics

, Volume 169, Issue 8, pp 1483–1506 | Cite as

Analysis of GPS Measurements in Eastern Canada Using Principal Component Analysis



Continuous Global Positioning System (CGPS) position time series from eastern North America constrain the pattern and magnitude of regional crustal deformation. Initial analysis delineates consistent uplift patterns, as expected from glacial isostatic adjustment (GIA) predictions, but the associated horizontal deformation is not definitive, in part due to the short time periods for a significant number of the available stations. We employ an eigenpattern decomposition in order to define a unique, finite set of deformation patterns for this continuous GPS data. Similar in nature to the empirical orthogonal functions historically employed in the analysis of atmospheric and oceanographic phenomena, the method derives the eigenvalues and eigenstates from the diagonalization of the correlation matrix using a Karhunen–Loeve expansion (KLE). The KLE technique is used to identify the important modes in both time and space for the CGPS data, modes that potentially include signals such as horizontal and vertical GIA, tectonic strain, and seasonal effects. Here we filter both the vertical and horizontal velocity patterns on different spatiotemporal scales in order to study the potential geophysical sources, after the removal of correlated and random noise. The method is successful in disaggregating the linear vertical signal from more variable and less spatially correlated signals. The vertical and horizontal results are compared to the predictions of the ICE-3G GIA loading model with a number of plausible mantle viscosity profiles. The horizontal velocity analysis allows for qualitative differentiation between several potential GIA models and suggests that, with longer time series, this technique can be employed to remove correlated noise and improve estimates of crustal strain patterns and their sources.


  1. Adams, J. and P. W. Basham (1991), The seismicity and seismotectonics of eastern Canada, in Neotectonics of North America, Google Scholar
  2. Adams, J., and S. Halchuk (2003), Fourth generation seismic hazard maps of Canada: Values for over 650 Canadian localities intended for the 2005 Building Code of Canada, Geol. Surv. Can. Open File, 4459, 155 pp.Google Scholar
  3. Adams, J., P. W. Basham, and S. Halchuk (1995), Northeastern North America earthquake potential—New challenges for seismic hazard mapping Geol. Surv. Can. Current Res., 1995-D, 91–99.Google Scholar
  4. Altamimi, Z., P. Sillard, and C. Boucher (2002), ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561.
  5. Anghel, M. and Y. Ben-Zion (2001), Nonlinear system identification and forecasting of earthquake fault dynamics using artificial neural networks, EOS Trans., AGU, 82, F571.Google Scholar
  6. Anghel, M., Y. Ben-Zion, and R.R. Martinez (2004), Dynamical system analysis and forecasting of deformation produced by an earthquake fault, Pure and Applied Geophysics, 161, doi:10.1007/s00024-004-2547-9.
  7. Aubrey, D. G., and K. O. Emery, Eigenanalysis of recent United States sea levels, Cont. Shelf Res., 2, 21–33, 1983.Google Scholar
  8. Bawden, G.W., W., Thatcher, R.S., Stein, K.W. Hudnut, and G. Peltzer (2001), Tectonic contraction across Los Angeles after removal of groundwater pumping affects, Nature, 412, 812–815.Google Scholar
  9. Bevis M, D. Alsdorf, E. Kendrick, L.P., Fortes, B. Forsberg, R. Smalley, J. Becker (2005), Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys. Res. Ltrs., 32, L16308.Google Scholar
  10. Calais, E., J.Y. Han, C. DeMets, and J.M. Nocquet (2006), Deformation of the North American plate interior from a decade of continuous GPS measurements J. Geophys. Res., 111, B06402, doi:10.1029/2005JB004253.
  11. Conroy, J.L., J.T. Overpeck, J.E. Cole and M. Steinitz-Kannan (2009), Variable oceanic influences on western North American drought over the last 1200 years, GRL, 36, L17703, doi:10.1029/2009GL039558.
  12. Dragert, H., K. Wang, and T. James (2001), A silent slip event on the deeper Cascadia subduction interface, Science, 292, 1525–1528.Google Scholar
  13. Dong, D., P. Fang, Y. Bock, M. K. Cheng, and S. Miyazaki (2002), Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res., 107(B4), 2075, doi:10.1029/2001JB000573.
  14. Dong, D., P. Fang, Y. Bock, F. Webb, L. Prawirodirdjo, S. Kedar, and P. Jamason (2006), Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis, J. Geophys. Res. 111, doi:10.1029/2005JB003806.
  15. Dyke, A. S. (2004), An outline of North American deglaciationwith emphasis on central and northern Canada, in Quaternary Glaciations—Extent and Chronology, Part 2, North America, Dev. Quat. Sci., vol. 2b, edited by J. Ehlers and P. L. Gibbard, pp. 373–424, Elsevier, New York.Google Scholar
  16. Fancourt C.L. and J. C. Principe (1998), Competitive Principal Component Analysis for Locally Stationary Time Series, IEEE Trans. Signal Proc., 46, 3068–3081.Google Scholar
  17. Faure, S., A. Tremblay, and J. Angelier (1996), Alleghanian paleostress reconstruction in the northern Appalachians: Intraplate deformation between Laurentia and Gondwana, Geol. Soc. Am. Bull., 108, 1467–1480.Google Scholar
  18. Fukunaga, K. (1970), Introduction to Statistical Pattern Recognition, Academic, San Diego, Calif.Google Scholar
  19. Hanrahan, J.L., S.V. Kravtsov, P.J. Roebber (2010), Connecting past and present climate variability to the water levels of Lakes Michigan and Huron, Geophys. Res. Ltrs., 37, L01701, doi:10.1029/2009GL041707.
  20. Henton, J. A., M. R. Craymer, R. Ferland, H. Dragert, S. Mazzotti, and D. L. Forbes (2006), Crustal motion and deformation monitoring of the Canadian landmass, Geomatica, 60, 173–191.Google Scholar
  21. Hill, E.M., J.L. Davis, P. Elo′segui, B.P. Wernicke, E. Malikowski, and N.A. Niemi, (2009) Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada, J. Geophys. Res., doi:10.1029/2008JB006027.
  22. Hoerling, M., X.-W. Quan, J. Eischeid, (2009), Distinct causes for two principal US droughts of the 20th century, GRL, 36, L19708, doi:10.1029/2009GL039860.
  23. Holmes, P., J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Univ. Press, New York, 1996.Google Scholar
  24. Hotelling, H. (1933), Analysis of a complex of statistical variables into principal components, J. Educ. Psych., 24, 417–520.Google Scholar
  25. Hugentobler, U., S. Schaer, and P. Fridez (Eds.) (2001), Documentation of the Bernese GPS software version 4.2, 511 pp., Astron. Inst., Univ. of Bern, Bern.Google Scholar
  26. Hudnut, K. W., Z. Shen, M. Murray, S. McClusky, R. King, T. Herring, B. Hager, Y. Feng, P. Fang, A. Donnellan (1996), Co-seismic displacements of the 1994 Northridge, California, earthquake, Bull. Seismol. Soc. Am., 86, s19–s36.Google Scholar
  27. James, T. S., and A. L. Bent (1994), A comparison of eastern North America seismic strain rates to postglacial rebound strain rates, Geophys. Res. Lett., 21, 2127–2130.Google Scholar
  28. James, T. S., and A. Lambert (1993), A comparison of VLBI data with the ICE-3G glacial rebound model, Geophys. Res. Lett., 20, 871–874.Google Scholar
  29. Johansson, J. M., et al. (2002), Continuous GPS measurements of postglacialadjustment in Fennoscandia: 1. Geodetic results, J. Geophys. Res., 107(B8), 2157, doi:10.1029/2001JB000400.
  30. Karlstrom, K. E., K. I. Ahall, S. S. Harlan, M. L. Williams, J. McLelland, and J. W. Geissman (2001), Long-lived (1.8– 1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia, Precambrian Res., 111, 5–30.Google Scholar
  31. Kedar, S., G. A. Hajj, B. D. Wilson, and M. B. Heflin (2003), The effect of the second order GPS ionospheric correction on receiver positions, Geophys. Res. Lett., 30(16), 1829, doi:10.1029/2003GL017639.
  32. Kumarapeli, P. S. (1985), Vestiges of Iapetan rifting in the craton west of the northern Appalachians, Geosci. Can., 12, 54–59.Google Scholar
  33. Lambert, A., N. Courtier, G. S. Sasagawa, F. Klopping, D. Winester, T. S. James, and J. O. Liard (2001), New constraints on Laurentide postglacial rebound from absolute gravity measurements, Geophys. Res. Lett., 28, 109–112.Google Scholar
  34. Langbein, J. (2008), Noise in GPS displacement measurements from Southern California and Southern Nevada, J. Geophys. Res., doi:10.1029/2007JB005247.
  35. Langbein, J. and H. Johnson (1997), Correlated errors in geodetic time series: Implications for time-dependent deformation, J. Geophys. Res., 102, 591–603.Google Scholar
  36. Lemieux, Y., A. Tremblay, and D. Lavois (2003), Structural analysis of supracrustal faults in the Charlevoix area, Québec: Relation to impact cratering and the St-Laurent fault system, Can. J. Earth Sci., 40, 221–235.Google Scholar
  37. Main, I.G., L. Li, K. J. Heffer, O. Papasouliotis, and T. Leonard (2006), Long-range, critical-point dynamics in oil field flow rate data, Geophys. Res. Lett., 33, L18308, doi:10.1029/2006GL027357.
  38. Mainville, A., and M. Craymer (2005), Present-day tilting of the Great Lakes region based on water level gauges, Geol. Soc. Am. Bull., 117, 1070–1080.Google Scholar
  39. Márquez-Azúa, B., and C. DeMets (2003), Crustal velocity field of Mexico from continuous GPS measurements, 1993 to June 2001: Implications for the neotectonics of Mexico, J. Geophys. Res., 108(B9), 2450, doi:10.1029/2002JB002241.
  40. Mazzotti, S., and J. Adams (2005), Rates and uncertainties on seismic moment and deformation in eastern Canada, J. Geophys. Res., 110, B09301, doi:10.1029/2004JB003510.
  41. Mazzotti, S., H. Dragert, J. Henton, M. Schmidt, R. Hyndman, T. James, Y. Lu, and M. Craymer (2003), Current tectonics of northern Cascadia from a decade of GPS measurements, J. Geophys. Res., 108(B12),2554, doi:10.1029/2003JB002653.
  42. Mazzotti, S., T.S. James, J. Henton, and J. Adams (2005), GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: The Saint Lawrence valley example, J. Geophys. Res., 110, B11301, doi:10.1029/2004JB003590.
  43. Mazzotti, S. (2007), Geodynamic models for earthquake studies in intraplate North America, in Stein, S., and Mazzotti, S., eds., Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues, Geol. Soc. Amer. Special Paper 425, p. 17–33, doi:10.1130/2007.2425(02).
  44. Moghaddam, B., W. Wahid, and A. Pentland, Beyond eigenfaces: Probabilistic matching for face recognition, paper presented at Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 14–16 April 1998.Google Scholar
  45. Park, K., R. S. Nerem, J. L. Davis, M. S. Schenewerk, G. A. Milne, and J. X. Mitrovica (2002), Investigation of glacial isostatic adjustment in the northeast US using GPS measurements, Geophys. Res. Lett., 29(11), 1509, doi:10.1029/2001GL013782.
  46. Parker, J. W. (2001), Analysis and modeling of southern California deformation, in APEC Cooperation for Earthquake Simulation (ACES), 2nd ACES Workshop Proceedings, Univ. of Queensland, Brisbane, Australia.Google Scholar
  47. Peltier, W. R. (1998), Postglacial variations in the level of the sea: Implications for climate dynamics and solid-Earth geophysics, Rev. Geophys., 36, 603–689.Google Scholar
  48. Peltier, W. R. (2002), Global glacial isostatic adjustment: Palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model, J. Quat. Sc., 17, 491–510.Google Scholar
  49. Peltier, W. R. and R. Drummond (2009), Rheological stratification of the lithosphere: A direct inference based upon the geodetically observed pattern of the glacial isostatic adjustment of the North American continent, Geophys. Res. Ltrs., doi:10.1029/2008GL034586.
  50. Penland, C. (1989), Random forcing and forecasting using principal oscillation pattern analysis, Mon. Weather Rev., 117, 2165–2185.Google Scholar
  51. Penland, C., and P. D. Sardeshmukh (1995), The optimal growth of tropical sea surface temperature anomalies, J. Clim., 8, 1999–2024.Google Scholar
  52. Posadas, A.M., F. Vidal, F. DeMiguel, G. Alguacil, J. Pena, J.M. Ibanez, and J. Morales (1993), Spatial-temporal analysis of a seismic series using the principal components method—the Antequera series, Spain, 1989, J. Geophys. Res., 98, 1923–1932.Google Scholar
  53. Preisendorfer, R. W., Principle Component Analysis in Meteorology and Oceanography, Elsevier Sci., New York, 1988.Google Scholar
  54. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, (1992), Numerical Recipes in C, 2nd ed., Cambridge Univ. Press, New York.Google Scholar
  55. Rondot, J. (1968), Nouvel impact meteoritique fossile? La structure semicirculaire de Charlevoix, Can. J. Earth Sci., 5, 1305–1317.Google Scholar
  56. Savage, J. C. (1988), Principal component analysis of geodetically measured deformation in Long Valley caldera, eastern California, 1983–1987, J. Geophys. Res., 93, 13297–13305.Google Scholar
  57. Savage, J.C., and J. Langbein (2008), Postearthquake relaxation after the 2004 M6 Parkfield, California, earthquake and rate-and-state friction, J. Geophys. Res., 113, B10407, doi:10.1029/2008JB005723.
  58. Scherneck, H.-G., J. M. Johansson, and R. Haas (2000), BIFROST project: Studies of variations of absolute sea level in conjunction with postglacial rebound in Fennoscandia, in Towards an Integrated Global Geodetic Observing System (IGGOS), Int. Assoc. Geod. Symp., vol. 120, edited by R. Rammel et al., pp. 241–244, Springer, New York.Google Scholar
  59. Sella, G.F., S. Stein, T.H. Dixon, M. Craymer, T.S. James, S. Mazzotti, and R.K. Dokka (2007), Observation of glacial isostatic adjustment in ‘‘stable’’ North America with GPS, Geophys. Res. Ltrs., 34, L02306, doi:10.1029/2006GL027081.
  60. Sellinger, C.E., C.A. Stow, E.C. Lamon, and S.S. Qian (2008) Recent Water Level Declines in the Lake Michigan-Huron System, Environ. Sci. Technol., 42, 367–373.Google Scholar
  61. Small, D., and S. Islam (2007), Decadal variability in the frequency of fall precipitation over the United States, GRL, 34, L02404, doi:10.1029/2006GL028610.
  62. Smith, E.G.C., T.D. Williams, and D.J. Darby (2007), Principal component analysis and modeling of the subsidence of the shoreline of Lake Taupo, New Zealand, 1983–1999: Evidence for dewatering of a magmatic intrusion?, J. Geophys. Res., 112, B08406, doi:10.1029/2006JB004652.
  63. Stow, C. (2009), Water Levels of the Great Lakes, NOAA Great Lakes Environmental Research Laboratory Brochure.Google Scholar
  64. Tiampo, K.F., J.B. Rundle, S.J. Gross, S. McGinnis, W. Klein (2002), Eigenpatterns in southern California seismicity, Journal of Geophysical Research, 107, 2354, doi:10.1029/2001JB000562.
  65. Tiampo, K.F., J.B. Rundle, W. Klein, Y. Ben-Zion, S. McGinnis, (2004), Using eigenpattern analysis to constrain seasonal signals in southern California, Pure and Applied Geophysics, 1991–2003.Google Scholar
  66. Tremblay, A., B. Long, and U. Glasmacher (2001), Supracrustal faults of the St Lawrence Rift system, Quebec: Kinematics and geometry as revealed by field mapping and marine seismic reflection data, Geol. Soc. Am. Abstr. Programs, 33, A-210.Google Scholar
  67. Tushingham, A. M., and W. R. Peltier (1991), ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of postglacial relative sea level change, J. Geophys. Res., 96, 4497–4523.Google Scholar
  68. Vautard, R., and M. Ghil (1989), Singular spectrum analysis in nonlinear dynamics, with applications to paleodynamic time series, Physica D, 35, 395–424.Google Scholar
  69. Watson, K. M., Y. Bock, and D.T. Sandwell (2002), Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin, J. Geophys. Res., 107(B4), 2074, doi:10.1029/2001JB000470.
  70. Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res., 102, 18,057–18,070.Google Scholar
  71. Wheeler, R. L. (1995), Earthquakes and the cratonward limit of Iapetan faulting in eastern North America, Geology, 23, 105–108.Google Scholar
  72. Wheeler, R. L., and A. C. Johnson (1992), Geological implications of earthquake source parameters in central and eastern North America, Seismol. Res. Lett., 63, 491–514.Google Scholar
  73. Williams, H. (1979), Appalachian orogen in Canada, Can. J. Earth Sci., 16, 792–807.Google Scholar
  74. Williams, S. D. P., Y. Bock, P. Fang, P. Jamason, R. M. Nikolaidis, L. Prawirodirdjo, M. Miller, and D. J. Johnson (2004), Error analysis of continuous GPS position time series, J. Geophys. Res., 109, B03412, doi:10.1029/2003JB002741.
  75. Zerbini, S., Raicich, F., Richter, B., Gorini, V., Errico, M. (2010), Hydrological signals in height and gravity in northeastern Italy inferred from principal components analysis, J. Geodynamics, doi:10.1016/j.jog.2009.11.001.

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  2. 2.Geological Survey of CanadaNatural Resources CanadaSidneyCanada

Personalised recommendations