Advertisement

Pure and Applied Geophysics

, Volume 170, Issue 1–2, pp 155–171 | Cite as

Statistical Variability and Tokunaga Branching of Aftershock Sequences Utilizing BASS Model Simulations

  • Mark R. Yoder
  • Jordan Van Aalsburg
  • Donald L. Turcotte
  • Sergey G. Abaimov
  • John B. Rundle
Article

Abstract

Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter (GR) frequency–magnitude statistics. They also satisfy Omori’s law for power-law seismicity rate decay and Båth’s law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency–magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth’s law and do not generate inverse GR scaling.

Keywords

Aftershocks foreshocks ETAS model BASS model Tokunaga networks 

Notes

Acknowledgments

We would like to acknowledge extensive discussions with James Holliday, Robert Shcherbakov, Armin Bunde, and Sabine Lennartz. This research has been partially supported by US DOE grant DE-FG03-95ER14499 and DE-FG02-04ER15568.

References

  1. Agnew, D. C. and Jones, L. M.: Prediction probabilities from foreshocks, J. Geophys. Res., 96, 11959–11971, 1991.Google Scholar
  2. Aki, K.: A probabilistic synthesis of precursory phenomena, Earthquake Prediction, pp. 566–574, American Geophysical Union, Washington, DC, 1981.Google Scholar
  3. Båth, M.: Lateral inhomogeneities in the upper mantle, Tectonophysics, 2, 483–514, 1965.Google Scholar
  4. Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys. Rev. A, 38, 364–374. doi: 10.1103/PhysRevA.38.364, 1988.
  5. Bak, P., Christensen, K., Danon, L., and Scanlon, T.: Unified Scaling Law for Earthquakes, Phys. Rev. Lett., 88, 178 501. doi: 10.1103/PhysRevLett.88.178501, 2002.
  6. Burridge, R. and Knopoff, L.: Model and theoretical seismicity, Bull. Seis. Soc. Am., 57, 341–371, 1967.Google Scholar
  7. Carlson, J. and Langer, J.: Mechanical model of an earthquake fault, Phys. Rev. A, 40, 6470–6484, 1989.Google Scholar
  8. Clar, S., Drossel, B., and Schwabl, F.: Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev. E, 50, 1009–1019. doi: 10.1103/PhysRevE.50.1009, 1994.
  9. Drossel, B. and Schwabl, F.: Self-organized critical forest-fire model, 1992.Google Scholar
  10. Enescu, B., Mori, J., Miyazawa, M., and Kano, Y.: Omori-Utsu law c-values associated with recent moderate earthquakes in Japan, Bull. Seismol. Soc. Am., 99, 884–891. doi: 10.1785/0120080211, 2009.
  11. Felzer, K. and Brodsky, E.: Decay of aftershock density with distance indicates triggering by dynamic stress, Nature, 441, 735–738. doi: 10.1038/nature04799, 2006.
  12. Felzer, K. R., Abercrombie, R. E., and Ekstrom, G.: A common origin for aftershocks, foreshocks, and multiplets, Bull. Seis. Soc. Am., 94, 88–98, 2004.Google Scholar
  13. Frohlich, C. and Davis, S. D.: Teleseismic b values; Or, Much Ado about 1.0, J Geophys Res, 98, 631–644. doi: 10.1029/92JB01891, 1993.
  14. Gabrielov, A., Newman, W. I., and Turcotte, D. L.: Exactly soluble hierarchical cluster model: inverse cascades, self-similarity and scaling, Phys. Rev. E, 60, 5293–5300, 1999.Google Scholar
  15. Gutenberg, B. and Richter, C. F.: Seismicity of the Earth and Associated Phenomenon, Princeton Univ. Press, 2nd edn., 1954.Google Scholar
  16. Helmstetter, A. and Sornette, D.: Subcritical and supercritical regimes in epidemic models of earthquake aftershocks, J. Geophys. Res., 107, 2237, 2002.Google Scholar
  17. Helmstetter, A. and Sornette, D.: Foreshocks explained by cascades of triggered seismicity, J. Geophys. Res., 108, 2457, 2003a.Google Scholar
  18. Helmstetter, A. and Sornette, D.: Predictability in the epidemic-type aftershock sequence model of interacting triggered seismicity, J. Geophys. Res., 108, 2482, 2003b.Google Scholar
  19. Helmstetter, A. and Sornette, D.: Båth’s law derived from the Gutenberg–Richter law and from aftershock properties, Geophys. Res. Lett., 30, 2069, 2003c.Google Scholar
  20. Helmstetter, A., Sornette, D., and Grasso, J. R.: Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res., 108, 2046, 2003.Google Scholar
  21. Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: Self-similar branching of aftershock sequences, Physica A, 387, 933–943, 2008a.Google Scholar
  22. Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: A review of earthquake statistics: Fault and seismicity-based models, ETAS and BASS, Pure Ap. Geophys., 165, 1003–1024, 2008b.Google Scholar
  23. Horton, R. E.: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull, 56, 275–370. doi: 10.1130/0016-7606, 1945.
  24. Huc, M. and Main, I. G.: Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality, J. Geophys. Res., 108. doi: 10.1029/2001JB001645, 2003.
  25. Jones, L. M.: Foreshocks and time-dependent earthquake hazard assessment in southern California, Bull. Seis. Sec. Am., 75, 1669–1679, 1985.Google Scholar
  26. Kagan, Y.: Short-term properties of earthquake catalogs and models of earthquake source, Bull. Seismol. Soc. Am., 94, 1207–1228. doi: 10.1785/012003098, 2004.
  27. Kilb, D., Gomberg, J., and Bodin, P.: Triggering of earthquake aftershocks by dynamic stress, Nature. doi: 10.1038/35046046, 2000.
  28. King, G., Stein, R.S., and Lin, J.: Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am., 84, 935–953, 1994.Google Scholar
  29. Maeda, K.: Time distribution of immediate foreshocks obtained by a stacking method, Pure Appl. Geophys., 155, 381–394, 1999.Google Scholar
  30. Malamud, B. D., Morein, G., and Turcotte, D. L.: Forest Fires: An Example of Self-Organized Critical Behavior, Science, 281, 1840–1842. doi: 10.1126/science.281.5384.1840, 1998.
  31. Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi: 10.1126/science.156.3775.636, 1967a.
  32. Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi: 10.1126/science.156.3775.636, 1967b.
  33. Nanjo, K. Z., Enescu, B., Shcherbakov, R., Turcotte, D. L., Iwata, T., and Ogata, Y.: Decay of aftershock activity for Japanese earthquakes, J. Geophys. Res., 112, B08 309, 2007.Google Scholar
  34. Ogata, Y.: Space–time point process models for earthquake occurrences, Ann. Inst. Statist. Math, 50, 379–402, 1998.Google Scholar
  35. Ogata, Y.: Seismicity analysis through point-process modeling: a review, Pure Appl. Geophys., 155, 471–507, 1999.Google Scholar
  36. Ogata, Y. and Zhuang, H. C.: Space–time ETAS models and an improved extension, Tectonophys., 413, 13–23, 2006.Google Scholar
  37. Ogata, Y., Utsu, T., and Katsura, K.: Statistical features of foreshocks in comparison with other earthquake clusters, Geophys. J. Int., 121, 233–254, 1995.Google Scholar
  38. Ossadnik, P.: Branch order and ramification analysis of large diffusion limited aggregation clusters, Phys. Rev. A., 45, 1058–1066, 1992.Google Scholar
  39. Peckham, S.: New results for self-similar trees with application to river networks, Water Resour. Res., 31, 1023–1029, 1995.Google Scholar
  40. Pelletier, J.: Self-organization and scaling relationships of evolving river networks, J. Geophys. Res., 104, 7359–7375, 1999.Google Scholar
  41. Pelletier, J. D. and Turcotte, D. L.: Shapes of river networks and leaves: Are they statistically similar?, Phil. Trans. Roy. Soc., B 355, 307–311, 2000.Google Scholar
  42. Reasenberg, P. A.: Foreshock occurrence before large earthquakes, J. Geophys. Res., 104, 4755–4768, 1999a.Google Scholar
  43. Reasenberg, P. A.: Foreshock occurrence rates before large earthquakes worldwide, Pure Ap. Geophys., 155, 355–379, 1999b.Google Scholar
  44. Rodriguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: Chance and self-organization, Cambridge University Press, 1997.Google Scholar
  45. Rundle, J. B. and Jackson, D. D.: Numerical simulation of earthquake sequences, Bull. Seis. Soc. Am., 67, 1363–1377, 1977.Google Scholar
  46. Savage, M. K. and de Polo, D. M.: Foreshock probabilities in the western Great-Basin eastern Sierra Nevada, Bull. Seism. Soc. Am., 83, 1910–1938, 1993.Google Scholar
  47. Shcherbakov, R. and Turcotte, D. L.: A damage mechanics model for aftershocks, Pure Ap. Geophys., 161, 2379–2391, 2004a.Google Scholar
  48. Shcherbakov, R. and Turcotte, D. L.: A modified form of Båth’s law, Bull. Seis. Soc. Am, 94, 1968–1975. doi: 10.1785/012003162, 2004b.
  49. Shcherbakov, R., Turcotte, D. L., and Rundle, J. B.: A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11 613, 2004.Google Scholar
  50. Shcherbakov, R., Yakovlev, G., Turcotte, D. L., and Rundle, J. B.: Model for the distribution of aftershock interoccurrence times, Phys. Rev. Let., 95. doi: 10.1103/PhysRevLett.95.218501, 2005.
  51. Sornette, D. and Werner, M. J.: Apparent clustering and apparent background earthquakes biased by undetected seismicity, J. Geophys. Res., 110, B09 303, 2005a.Google Scholar
  52. Sornette, D. and Werner, M. J.: Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, Båth’s law, and observed aftershock sequences, J. Geophys. Res., 110, B08 304, 2005b.Google Scholar
  53. Strahler, A. N.: Quantitative analysis of watershed geomorphology, Am. Geophys. Un. Trans, 38, 913–920, 1957.Google Scholar
  54. Tokunaga, E.: Consideration on the composition of drainage networks and their evolution, Geographical Rep. Tokya Metro. Univ., 13, 1–27, 1978.Google Scholar
  55. Tormann, T., Savage, M. K., Smith, E. G. C., Stirling, M. W., and Wiemer, S.: Time-distance-, and magnitude-dependent foreshock probability model for New Zealand, Bull. Seis. Soc. Am., 98, 2149–2160, 2008.Google Scholar
  56. Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics, Cambridge University Press, 2nd edn., 1997.Google Scholar
  57. Turcotte, D. L., Pelletier, J., and Newman, W. I.: Networks with side branching in biology, J. Theor. Biol., 193, 577–592, 1998.Google Scholar
  58. Turcotte, D. L., Malamud, B. D., Morein, G., and Newman, W. I.: An inverse-cascade model for self-organized critical behavior, Physica A., 268, 629–643. doi: 10.1016/S0378-4371(99)00092-8, 1999.
  59. Turcotte, D. L., Holliday, J. R., and Rundle, J. B.: BASS, an alternative to ETAS, Geophys. Res. Lett., 34, L12 303, 2007.Google Scholar
  60. Utsu, T.: Estimation of parameters for recurrence models of earthquakes, Earthquake Res. Insti. Univ. Tokyo, 59, 53–66, 1984.Google Scholar
  61. Witten, T. A. and Sander, L. M.: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Let., 47, 1400–1403, 1981.Google Scholar
  62. Yakovlev, G., Newman, W. I., Turcotte, D. L., and Gabrielov, A.: An inverse cascade model for self-organized complexity and natural hazards, Geophys. J. Int., 163, 433–442, 2005.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Mark R. Yoder
    • 1
  • Jordan Van Aalsburg
    • 1
    • 2
  • Donald L. Turcotte
    • 2
  • Sergey G. Abaimov
    • 2
    • 4
  • John B. Rundle
    • 1
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of CaliforniaDavisUSA
  2. 2.Department of GeologyUniversity of CaliforniaDavisUSA
  3. 3.Santa Fe InstituteSanta FeUSA
  4. 4.Department of GeosciencesPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations