Pure and Applied Geophysics

, Volume 169, Issue 8, pp 1443–1456 | Cite as

An Elliptical Model for Deformation Due to Groundwater Fluctuations

  • Kristy F. Tiampo
  • Francois-Alexis Ouegnin
  • Sreeram Valluri
  • Sergey Samsonov
  • José Fernández
  • Garrett Kapp
Article

Abstract

Historically, surface subsidence as a result of subsurface groundwater fluctuations have produced important and, at times, catastrophic effects, whether natural or anthropogenic. Over the past 30 years, numerical and analytical techniques for the modeling of this surface deformation, based upon elastic and poroelastic theory, have been remarkably successful in predicting the magnitude of that deformation (Le Mouélic and Adragna in Geophys Res Lett 29:1853, 2002). In this work we have extended the formula for a circular-shaped aquifer (Geertsma in J Petroleum Tech 25:734–744, 1973) to a more realistic elliptical shape. We have improved the accuracy of the approximation by making use of the cross terms of the expansion for the elliptic coordinates in terms of the eccentricity, e, and the mean anomaly angle, M, widely used in astronomy. Results of a number of simulations, in terms of e and M developed from the transcendental Kepler equation, are encouraging, giving realistic values for the elliptical approximation of the vertical deformation due to groundwater change. Finally, we have applied the algorithm to modeling of groundwater in southern California.

Keywords

Deformation numerical techniques groundwater hydrology subsidence inversion geodesy 

References

  1. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions (Dover, New York 1970).Google Scholar
  2. Amelung, F., Galloway, D., Bell, J., Zebker, H., and Laczniak, R. (1999), Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation, Geology 27, 483-486.Google Scholar
  3. Anderssohn, J., Wetzel, H.U., Walter, T.R., Motagh, M., Djamour, Y., and Kaufmann, H. (2008), Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: results from InSAR and levelling. Geophysical Journal International 174, 287-294.Google Scholar
  4. Argus, D.F., Heflin, M.B., Peltzer, G., Webb, F.H., and Crampe, F. (2005), Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles, Journal of Geophysical Research 101, doi:10.1029/2003JB002934.
  5. Argus, D.F., and Gordon, R.G., (2001), Present tectonic motion across the Coast Ranges and the San Andreas fault system in central California, Geol. Soc. Am. Bull. 113, 1580–1592.Google Scholar
  6. Barry, D.A., Parlange, J.Y., Sander, G.C., and Sivaplan, M. (1993), A class of exact solutions for Richards equation, J. Hydrology 142, 29-46.Google Scholar
  7. Bawden, G., Thatcher, W., Stein, R., Hudnut, K., and Peltzer, G., (2001), Tectonic contraction across Los Angeles after removal of groundwater pumping effects, Nature 412, 812-815.Google Scholar
  8. Bell, J.W., Amelung, F., Ferretti, A., Bianchi, M., and Novali, F. (2008), Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resources Research, 44, 2 W02407. doi:10.1029/2007WR006152.
  9. Burbey, T.J. (2006), Three-dimensional deformation and strain induced by municipal pumping, Part 2: Numerical analysis, J. of Hydrology 330, 422-434.Google Scholar
  10. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., and Knuth, D.E. (1996), On the Lambert W function, Adv. Comput. Maths 5, 329-359.Google Scholar
  11. Dixon, T.H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., Sella, G., Kim, S.W., Wdowinski, S., and Whitman, D. (2006), Subsidence and flooding in New Orleans, Nature 441, 587-588.Google Scholar
  12. Fernández, J., Romero, R., Carrasco, D., Tiampo, K.F., Rodríguez-Velasco, G., Aparicio, A., Araña, V., and González-Matesan, F.J. (2005), Detection of displacements in Tenerife Island, Canaries, using radar interferometry. Geophysical Journal International 160, 33-45, doi:10.1111/j.1365-246X.2005.02487.x.
  13. Freeze, R.A., and Cherry, J.A., Groundwater (Prentice-Hall, NJ, 1979).Google Scholar
  14. Geertsma, J. (1973), Land Subsidence above Compacting Oil and Gas Reservoirs, J. of Petroleum. Tech. 25, 734-744.Google Scholar
  15. Gourmelen, N., Amelung, F., Francesco, C., Mariarosaria, M., and Lanari, R. (2007), Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks, Geophys. Res. Ltrs. 34, L09309, doi:10.1029/2007GL029427.
  16. Gradshteyn I.S., and Ryzhik, I.M., Table of Integrals Series and Products (Academic Press, NY, 1965).Google Scholar
  17. Hagihara, Y., Celestial Mechanics, v. 1, (MIT Press, 1970).Google Scholar
  18. Hudnut, K., Bock, Y., Galetzka, J., Webb, F., and Young, W. (2002), The Southern California Integrated GPS Network (SCIGN), Seismotectonics in Convergent Plate Boundaries, eds. Y. Fujinawa and A. Yosghida, Terrapub, 167-189 (http://www.scign.org/).
  19. Jacobs, A., Sandwell, D., Fialko, Y., and Sichoix, L. (2002), The 1997 (M 7.1) Hector Mine, California, earthquake: Near-field postseismic deformation from ERS interferometry, Bull. Seis. Soc. Am. 92, 4, 1433–1442.Google Scholar
  20. King, N.E., Argus, D., Langbein, J., Agnew, D.C., Bawden, G., Dollar, R.S., Liu, Z., Galloway, D., Reichard, E., Yong, A., Webb, F.H., Bock, Y., Stark, K., and Barseghian, D. (2007), Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005, Journal of Geophysical Research 112, B03409, doi:10.1029/2006JB004448.
  21. Kim, J. (2005), Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping, Water Resources Res., 41, doi:10.1029/2003WR002941.
  22. Lanari, R., Lundgren, P., Mariarosaria, M., and Casu, F. (2004), Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California, Geophys. Res. Ltrs, 31, L23613, doi:10.1029/2004GL021294, (2004).
  23. Landau L.D., and Lifshitz, E.M. Theory of Elasticity, 3rd edition (Butterworth-Heinemann, Oxford, 1986).Google Scholar
  24. Le Mouélic S., and Adragna, F. (2002), Ground Uplift in the city of Paris (France) detected by Satellite Radar Interferometry. Geophys. Res. Letters 29, 1853, doi:10.1029/2002GL015630.
  25. Li, Z., Muller, J.-P., Cross, P., and Fielding, E.J. (2005), Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration, J. Geophys. Res. 110, B03410.Google Scholar
  26. Logsdon, T. Orbital Mechanics: Theory and Applications (Wiley-Interscience, New York, 1997).Google Scholar
  27. Massonnet, D., and Feigl, K.L. (1998), Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys., 4, 441-494.Google Scholar
  28. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., and Feigl, K. (1993), The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142.Google Scholar
  29. Mills, W., et al. Orange County Water District, Master Plan Report. 371 (Orange County Water District, Fountain Valley, California, 1999).Google Scholar
  30. Motagh, M., Walter, T.R., Sharifi, M.A., Fielding, E., Schenk, A., Anderssohn, J., and Zschau, J. (2008), Land subsidence in Iran caused by widespread water reservoir overexploitation, Geophys. Res. Lett. 35, L16403.Google Scholar
  31. Murray C.D., and Dermott, S.F. Solar System Dynamics (Cambridge University Press, Cambridge, 1999).Google Scholar
  32. Poland, J.F., and Piper, A.M., Ground-water geology of the coastal zone, Long Beach ± Santa Ana area, California, US Geol. Surv. Water-Supply Paper W1109 162 (US Geol. Survey, Reston, Virginia, 1956).Google Scholar
  33. Rosen, P., Hensley, S., Peltzer, G., and Simons, M. (2004), Updated repeat orbit interferometry package released, EOS Transactions 85, 47.Google Scholar
  34. Samsonov, S. and Tiampo, K. (2006), Analytical optimization of DInSAR and GPS dataset for derivation of three-dimensional surface motion, Geoscience and remote sensing letters 3, 107–111.Google Scholar
  35. Samsonov, S., Tiampo, K.F., Rundle, J.B., and Li, Z. (2007), Application of DInSAR-GPS Optimization for Derivation of Fine-Scale Surface Motion Maps of Southern California, IEEE Transactions on Geoscience and Remote Sensing 45, 2, doi: 10.1109/TGRS.2006.887166.
  36. Schmidt, D., and Bürgmann, R. (2003), Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, Journal of Geophysical Research 108, doi:10.1029/2002JB002267.
  37. Tesauro, M., Berardino, P., Lanari, R., Sansisti, E., Fornaro, G., and Franschetti, G. (2000), Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry, Geophysical Research Letters 27, 1961-1964.Google Scholar
  38. Tiampo, K.F., Fernández, J., Jentzsch, G., Charco, M., and Rundle, J.B., (2004), Inverting for the parameters of a volcanic source using a genetic algorithm and a model for magmatic intrusion in elastic-gravitational layered earth models, Computers and Geosciences 30, 9, 985-1001.Google Scholar
  39. Tomás, R., Márquez, Y., Lopez-Sanchez, J.M., Delgado, J., Blanco, P., Mallorquí, J.J., Martínez, M., Herrera, G., and Mulas, J. (2005), Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case study, Rem. Sens. of Env., 98, 269-283.Google Scholar
  40. Valluri, S.R., Biggs, R.G., Harper W.L., and Wilson, C. (1999), The significance of the Mathieu-Hill differential equation for Newton’s apsidal precession theorem, Can. J. Phys. 77, 393-407.Google Scholar
  41. Valluri, S.R., Chishtie, F.A., and Vajda, A. (2006), The gravitational wave pulsar signal with Jovian and lunar perturbations and orbital eccentricity corrections, Class. Quantum. Grav. 23, 3323-3332.Google Scholar
  42. Valluri, S.R., Jeffrey, D.J., and Corless, R.M. (2000), Some applications of the Lambert W function to physics, Can. J. Phys. 78, 823-831.Google Scholar
  43. Valluri, S.R., Yu, P., Smith, G.E., and Wiegert, P.A. (2005), An Extension of Newton’s Apsidal Precession Theorem, Mon. Not. R. Astron. Soc. 358, 1273-1284.Google Scholar
  44. Vasconcelos, E.P., de Oliviera, N.T., and Farias, G.A. (1991), Surface polaritons on an elliptic cylinder, Phys Rev B 44, 24, 13740.Google Scholar
  45. Wang, Z.X., and Guo, D.R. Special Functions (World Scientific, Singapore, 1989).Google Scholar
  46. Watson, K., Bock, Y., and Sandwell, D. (2002), Satellite interferometric observation of displacements associated with seasonal groundwater in Los Angeles Basin, J. Geophys. Res. 107, 2074. doi:10.1029/2001JB000470.

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Kristy F. Tiampo
    • 1
  • Francois-Alexis Ouegnin
    • 2
    • 3
  • Sreeram Valluri
    • 2
  • Sergey Samsonov
    • 1
  • José Fernández
    • 4
  • Garrett Kapp
    • 1
  1. 1.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  2. 2.Departments of Applied Math and Physics and AstronomyUniversity of Western OntarioLondonCanada
  3. 3.International University of Grand Bassam (IUGB)Grand BassamCôte d’Ivoire
  4. 4.Instituto de Geociencias (CSIC-UCM), Facultad de Ciencias MatemáticasCiudad UniversitariaMadridSpain

Personalised recommendations