Pure and Applied Geophysics

, Volume 169, Issue 3, pp 555–578 | Cite as

Variational Data Assimilation Technique in Mathematical Modeling of Ocean Dynamics

Article

Abstract

Problems of the variational data assimilation for the primitive equation ocean model constructed at the Institute of Numerical Mathematics, Russian Academy of Sciences are considered. The model has a flexible computational structure and consists of two parts: a forward prognostic model, and its adjoint analog. The numerical algorithm for the forward and adjoint models is constructed based on the method of multicomponent splitting. The method includes splitting with respect to physical processes and space coordinates. Numerical experiments are performed with the use of the Indian Ocean and the World Ocean as examples. These numerical examples support the theoretical conclusions and demonstrate the rationality of the approach using an ocean dynamics model with an observed data assimilation procedure.

Keywords

Variational data assimilation ocean dynamics mathematical models numerical algorithms adjoint equations multicomponent splitting World ocean circulation 

References

  1. Agoshkov, V. I. (2003), Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics (IVM RAN, Moscow, 2003, 256 p.) [in Russian].Google Scholar
  2. Agoshkov, V.I. (2005), Inverse problems of the mathematical theory of tides: boundary-function problem. Russ. J. Numer. Anal. Math. Modelling. V. 20. N. 1. P. 1-18.Google Scholar
  3. Agoshkov, V.I., Gusev A.V., Dianski N.A., Oleinikov R.V. (2007), An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data. Russ. J. Numer. Anal. Math. Modelling. V. 22. N. 2. P. 133-161.Google Scholar
  4. Agoshkov, V.I., V. M. Ipatova (2007), Solvability of the Observational Data Assimilation Problem for a 3D Ocean Dynamics Model. Differential Equations N. 8. P. 1064–1075.Google Scholar
  5. Agoshkov, V.I., V. M. Ipatova (2007), Existence Theorems for a 3D Ocean Dynamics Model and Data Assimila tion Problems. Dokl. Akad. Nauk. V. 412. N. 2. P. 151–153.Google Scholar
  6. Agoshkov, V.I., V. M. Ipatova, V.B. Zalesny, E.I. Parmuzin, and V.P. Shutyaev (2010), Problems of Variational Assimilation of Observational Data into Ocean General Circulation Models and Methods for Their Solution, Izvestiya, Atmospheric and Oceanic Physics. V. 46. N. 6. P. 677-712.Google Scholar
  7. Agoshkov, V.I., S. A. Lebedev, and E. I. Parmuzin (2009), Numerical Solution to the Problem of Variational Assimilation of Operational Observational Data on the Ocean Surface Temperature. Izv. Akad. Nauk, Fiz. Atmos. Okeana V. 45. N. 1. P. 76–107 [Izv., Atmos. Ocean. Phys. V. 45. N. 1. P. 69–101.Google Scholar
  8. Agoshkov V.I., Marchuk G.I. (1993), On solvability and numerical solution of data assimilation problems. Russ. J. Numer. Anal. Math. Modelling. V. 8. N 1. P. 1-16.Google Scholar
  9. Agoshkov V.I., Minyuk F.P., Rusakov A.S., Zalesny V.B. (2005), Study and solution of identification problems for nonstationary 2D- and 3D-convection-diffusion equation. Russ. J. Numer. Anal. Math. Modelling. V. 20. N. 1. P. 19-43.Google Scholar
  10. Agoshkov, V.I., E. I. Parmuzin, and V. P. Shutyaev (2008), Numerical Algorythm of Variational Assimilation of Observational Data on Oceanic Surface Temperature. Zh. Vysch. Matem. Matem. Fiz. V. 48. N. 8. P. 1371–1391.Google Scholar
  11. Agoshkov V.I., Parmuzin E.I., Shutyaev V.P. (2008), A numerical algorithm of variational data assimilation for reconstruction of salinity fluxes on the ocean surface. Russ. J. Numer. Anal. Math. Modelling. V. 23. N. 2. P. 135-161.Google Scholar
  12. Bellman R.E. (1957), Dynamic Programming. Princeton University Press, Princeton, NJ 1957. Republished 2003: Dover, ISBN 0486428095.Google Scholar
  13. Bennett A. F. (2002), Inverse modeling of the ocean and atmosphere. Cambridge: Cambridge University Press, 234 p.Google Scholar
  14. Blum J., Le Dimet F.-X., Navon I.M. (2008), Data assimilation for geophysical fluids, in Giarlet (Ed.): Computational Methods for the Atmosphere and the Oceans. Special volume. Handbook of Numerical analysis. V. XIV. P. 377-434.Google Scholar
  15. Caya A., Sun J., Snyder C. (2005), A Comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation . Monthly Weather Review. V. 133. N. 11. P. 3081-3094.Google Scholar
  16. Courtier P., Andersson E., Heckley W., Pailleux J., Vasiljevic D., Hamrud M., Hollingsworth A., Rabier F., Fisher M. (1998), The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. R. Meteorol. Soc. V. 124. P. 1783-1807.Google Scholar
  17. Chassignet E.P. and Verron J. (eds., 2005). Ocean Weather Forecasting. An Integrated View of Oceanography, Springer, Dordrecht, the Netherlands, 577 p.Google Scholar
  18. Diansky, N.A., A. V. Bagno, and V. B. Zalesny (2002), Sigma Model of Global Ocean Circulation and Its Sensitivity to Variations in Wind Stress. Izv. Akad. Nauk, Fiz. Atm. Okeana V. 38. N. 4. P. 537–556 (2002) [Izv., Atmos. Ocean. Phys. V. 38. N. 4. P. 477–494.Google Scholar
  19. Diansky, N.A., V. B. Zalesny, S. N. Moshonkin, A.S. Rusakov (2006), High Resolution Modeling of the Monsoon Circulation in the Indian Ocean. Okeanologiya V. 46. N. 4. P. 11–12 [Oceanology V. 46. N. 5. P. 608–628 (2006)].Google Scholar
  20. Evensen G. (2007), Data assimilation: The ensemble Kalman filter. Berlin: Springer, 307 pp.Google Scholar
  21. Le Dimet F.-X., Shutyaev V.P. (2005), On deterministic error analysis in variational data assimilation. Nonlinear Processes in Geophysics. V. 12. P. 481-490.Google Scholar
  22. Le Dimet F.-X., Talagrand O. (1986), Variational algorithms for analysis and assimilation of meteorological observations: Theoretical Aspects. Tellus. V. 38A. P. 97-110.Google Scholar
  23. Fertig E.J., Harlim J., and Hunt B.R. (2007), A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96. Tellus. V. 59A. P. 96–100.Google Scholar
  24. Gandin L. (1963), Impartial Analysis of Hydrometeorological Fields (Gidrometizdat, Leningrad) [in Russian].Google Scholar
  25. Gilbert J.-C., Lemarechal C. (1989), Some numerical experiment with variable storage quasi-Newton algorithms. Math. Program. B25. P. 408-435.Google Scholar
  26. Ipatova V. M. (2008), Solvability of the ocean hydrothermodynamics problem under a nonlinear state equation. Russ. J. Numer. Anal. Math. Modelling. V. 23. N. 2. P. 185-196.Google Scholar
  27. Ivchenko, V. O., S. D. Danilov, D. V. Sidorenko, J. Schroter, M. Wenzel, and D. L. Aleynik, (2007), Comparing the steric height in the Northern Atlantic with satellite altimetry. Ocean Science, 3. P. 485-490.Google Scholar
  28. Ivchenko, V. O., N. C. Wells, and D. L. Aleynik, (2006), Anomaly of heat content in the northern Atlantic in the last 7 years: Is the ocean warming or cooling? Geophysical Research Letters, 33, 6.Google Scholar
  29. Jazwinski A.H. (1970), Stochastic Processes and Filtering Theory. Academic Press, London, 376 p.Google Scholar
  30. Kalman R.E. (1961), A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. V. 82D. P. 35-45.Google Scholar
  31. Kalman R.E., Bucy R.S. (1961), New results in linear filtering and prediction theory. Trans. ASME J. Basic Eng. V. 83D. P. 95-108.Google Scholar
  32. Kalnay E. (2003), Atmospheric Modeling. Data Assimilation and Predictibility. Cambridge University Press, 457 p.Google Scholar
  33. Kalnay E., Li H., Miyoshi T., Yang S.-C. and Ballabrera-Poy J. (2007), 4D-Var or Ensemble Kalman Filter? Tellus. V. A 59. P. 758–773.Google Scholar
  34. Korotaev, G.K. and V. N. Eremeev (2006), Introduction to Operative Oceanography of the Black Sea (NPTs EKOSI Gidrofizika, Sevastopol) [in Russian].Google Scholar
  35. Kuzin, V.I. (1985), Finite Element Method in Simulation of Oceanic Processes (CC SO AN SSSR, Novosibirsk) [in Russian].Google Scholar
  36. Lorenc A.C. (1981), A global three-dimensional multivariate statistical analysis scheme. Mon. Wea. Rev. V. 109. P. 701-721.Google Scholar
  37. Lorenc A.C. (1986), Analysis methods for numerical weather prediction. Quart. J. R. Meteorol. Soc. V. 112. P. 1177-1194.Google Scholar
  38. Lions J.-L. (1968), Control Optimal des Systemes Gouvernes par des Equations aux Derivees Partielles. Dunod, Paris, 426 p.Google Scholar
  39. Marchuk G.I. (1995), Adjoint Equations and Analysis of Complex Systems. Kluwer, Dordrecht, 466 p.Google Scholar
  40. Marchuk G.I. (1975), Formulation of the theory of perturbations for complicated models. Appl. Math. Optimiz., V.2. N. 1. P. 1-33.Google Scholar
  41. Marchuk G.I. (1982), Methods of Computational Mathematics. Springer-Verlag, New York.Google Scholar
  42. Marchuk, G.I. (1990), Splitting and alternating direction methods, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, V. 1, North-Holland, Amsterdam. P. 197-462.Google Scholar
  43. Marchuk G.I., Agoshkov V.I., Shutyaev V.P. (1996), Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, CRC Press Inc., New York, 275 p.Google Scholar
  44. Marchuk G.I., Penenko V.V. (1978), Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment, in G.I.Marchuk (ed.), Modelling and Optimization of Complex Systems: Proc. Of the IFIP-TC7 Working conf., Springer, New York. P. 240-252.Google Scholar
  45. Marchuk G.I., Shutyaev V.P. (1994), Iteration methods for solving a data assimilation problem. Russ. J. Numer. Anal. Math. Modelling. V. 9. N. 3. P. 265-279.Google Scholar
  46. Marchuk, G.I., V. P. Dymnikov, and V. B. Zalesny (1987), Mathematical Models in Geophysical Hydrodynamics and Numerical Methods of Their Realization Gidrometeoizdat, Leningrad) [in Russian].Google Scholar
  47. Marchuk G.I. and Kuzin V.I. (1982), On the combination of the finite element and splitting-up methods in the solution of the parabolic equations. J. Comp. Phys. V. 52. N 2. P. 237-272.Google Scholar
  48. Marchuk G.I., Rusakov A.S., Zalesny V.B., Diansky N.A. (2005), Splitting Numerical Technique with Application to the High Resolution Simulation of the Indian Ocean Circulation. Pure and Applied Geophysics, Birkhauser Verlag, Basel. N. 162. P. 1407-1429.Google Scholar
  49. Marchuk G., Shutyaev V., Zalesny V. (2001), Approaches to the solution of data assimilation problems, in Menaldi J.L., Rofman E., Sulem A. (eds.) Optimal Control and Partial Differential Equations, IOS Press, Amsterdam. P. 489-497.Google Scholar
  50. Marchuk G.I., Zalesny V.B. (1993), A numerical technique for geophysical data assimilation problem using Pontryagin’s principle and splitting-up method. Russ. J. Numer. Anal. Math. Modelling. V. 8, N. 4. P. 311-326.Google Scholar
  51. Navon I.M. (2009), Data assimilation for numerical weather prediction: a review, in Park S.K., Xu L. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer-Verlag, Berlin Heidelberg. P. 21-65.Google Scholar
  52. Nechaev, D, Scroeter J., Yaremchuk M, (2003), A diagnostic stabilized finite-element ocean circulation model. Ocean Modelling. V. 5. P. 37-63.Google Scholar
  53. Nelepo, B.A., V. V. Knysh, A. S. Sarkisyan, Timchenko I.E., (1979), Study of Synoptic Variability of the Ocean Based on DynamicStochastic Approach. Dokl. Akad. Nauk V. 246. N. 4. P. 974–978.Google Scholar
  54. Nerger, L., J. Schröter, S. Danilov, W. Hiller. (2006) Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter. Ocean Dynamics 56 634-649, doi:10.1007/s10236-006-0083-0.
  55. Penenko, V.V. and N. V. Obraztsov, (1976), Variational Method for Fields of Meteorological Elements. Meteorol. Gidrol., N. 11. P. 1–11.Google Scholar
  56. Pontryagin, L.S. et al. (1962), The Mathematical Theory of Optimal Processes, V. 4. Interscience. Translation of a Russian book. ISBN 2881240771 and ISBN 978-2881240775.Google Scholar
  57. Le Provost C., Salmon R. (1986), A variational method for inverting hydrographic data. J. Mar. Res. V. 44. P. 1-34.Google Scholar
  58. Sarkisyan A.S. and Suendermann J. (2009), Modelling Ocean Climate Variability. Springer, 374 p.Google Scholar
  59. Sarkisyan, A.S., V. B. Zalesny, N. A. Diansky, et al. (2005), Mathematical Models of Ocean and Sea Circulation in Modern Problems in Computational Mathematics and Mathematical Simulation, (Nauka, Moscow), V. 2. P. 175–278 [in Russian].Google Scholar
  60. Sasaki Y. (1970), Some basic formalisms in numerical variational analysis. Mon. Wea. Rev. V. 98. P. 875-883.Google Scholar
  61. Shutyaev, V.P. (2001), Control Operators and Iterative Algorithms in Variational Data Assimilation Problems (Nauka, Moscow) [in Russian].Google Scholar
  62. Shutyaev V.P., Parmuzin E.I. (2009), Some algorithms for studying solution sensitivity in the problem of variational assimilation of observation data for a model of ocean thermodynamics. Russ. J. Numer. Anal. Math. Modelling. V. 24. N. 2. P. 145-160.Google Scholar
  63. Tian X., Xie J., and Dai A. (2008), An ensemble-based explicit 4D-Var assimilation method. Journal of Geophysical Research. V. 113 (D21124). 13 p.Google Scholar
  64. Wenzel, M and V. B. Zalesny, (1996), Data Assimilation in One Dimensional Model of Heat ConvectionDiffusion in the Ocean. Izv. Akad. Nauk, Fiz. Atm. Okeana. V. 32. N. 5. P. 613–629.Google Scholar
  65. Wenzel M., J. Schröter, D. Olbers, (2001), The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation. Prog. in Oceanogr., 48. P. 73-119.Google Scholar
  66. Zalesny V.B., Gusev A.V. (2009), Mathematical model of the World ocean dynamics with algorithms of variational assimilation of temperature and salinity fields. Russ. J. Numer. Anal. Math. Modelling. V. 24. No. 2. P. 171-190.Google Scholar
  67. Zalesny V.B., Rusakov A.S. (2007), Numerical algorithm of data assimilation based on splitting and adjoint equation methods. Russ. J. Numer. Anal. Math. Modelling. V. 22. N. 2. P. 199-219.Google Scholar
  68. Zalesny V.B., Marchuk G.I., Agoshkov V.I., Bagno A.V., Gusev A.V., Diansky N.A., Moshonkin S.N., Tamsalu R (2010), Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method . Russ. J. Numer. Anal. Math. Modelling. V. 25. N. 6. P. 581-609.Google Scholar
  69. Zhang F. Q., Zhang M., and Hansen J. A. (2009), Coupling ensemble Kalman filter with four dimensional variational data assimilation. Adv. Atmos. Sci. V. 26. N. 1. P. 1–8.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Institute of Numerical Mathematics, RASMoscowRussia

Personalised recommendations