Pure and Applied Geophysics

, Volume 169, Issue 5–6, pp 873–880 | Cite as

The Effects of Desert Pavements (Gravel Mulch) on Soil Micro-Hydrology

  • K. F. Kaseke
  • A. J. Mills
  • J. Henschel
  • M. K. Seely
  • K. Esler
  • R. Brown


The effect of desert pavements (gravel mulch) on near surface soil micro-hydrology has been inadequately studied. Micro-hydrology in arid ecosystems occurs due to a daily non rainfall atmospheric water cycle, consisting of an input phase (dew, fog, vapour adsorption) and an evaporation phase. A winter comparative study between a bare soil (control) and gravel mulch using the automated microlysimeter approach was conducted in Stellenbosch, South Africa in 2008. Results showed that dew deposition and direct water vapour adsorption were significantly higher into bare soil compared to gravel mulch. In contrast, however, soil moisture from rain persists for a longer time under gravel mulch compared to bare soil. This result suggests that the greatest impact of gravel mulch on soil micro-hydrology is towards conserving moisture and could explain why the treatment is used in dry-land agriculture in Mediterranean regions.


Gravel mulch non rainfall atmospheric water dew vapour adsorption evaporation 



This study was financially supported by the National Research Foundation of South Africa (NRF). The authors would also like to thank Dr. J. Irish and Prof. M. Fey for the input.


  1. Acosta Baladon, A. N., 1973. Cultivos Enaredos. In: Graf, A., Kuttler, W., Werner, J., 2008. Mulching as a means of exploiting dew for arid agriculture? Atmos. Res. 87, 369–376.Google Scholar
  2. Acosta Baladon, A. N., 1996. Las precepitaciones ocultas y sus aplicaciones a la agricultura. In: Graf, A., Kuttler, W., Werner, J., 2008. Mulching as a means of exploiting dew for arid agriculture? Atmos. Res. 87, 369–376.Google Scholar
  3. Agam, N., Berliner, P.R., 2004. Diurnal water content changes in the bare soil of a coastal desert. J. Hydrometeo. 5, 922–933.Google Scholar
  4. Agam, N., Berliner, P.R., 2006. Dew formation and water vapour adsorption in semi arid environments—A review. J. Arid Environ. 65, 572–590.Google Scholar
  5. Beysens, D., 1995. The formation of dew. Atmos. Res. 39, 215–237.Google Scholar
  6. Brown, R., Mills, A. J., Jack, C., 2008. Non-rainfall moisture inputs in the Knersvlakte: Methodology and preliminary findings. Water SA. 34, 275–278.Google Scholar
  7. Danalatos, N. G., Kosmas, C. S., Moustakas, N. C., Yassoglou, 1995. Rock fragments II. Their impact on soil physical properties and biomass production under Mediterranean conditions. Soil Use Mgmt. 11, 121–126.Google Scholar
  8. Epstein, E., Grant, W. J., Struchtmeyer, R. A., 1966. Soil losses and crust formation as related to some soil physical properties. In: Webb, R. H., Wilshire, G. H., 1983. Environmental effects of off-road vehicles. Springer-Verlag New York Inc.Google Scholar
  9. Goossens, D., 1994. Effect of rock fragments on eolian deposition of atmospheric dust. Catena, 23, 167–189Google Scholar
  10. Graf, A., Kuttler, W., Werner, J., 2008. Mulching as a means of exploiting dew for arid agriculture? Atmos. Res. 87, 369–376.Google Scholar
  11. Hillel, D., 1982. Negev: land, water and life in a desert environment. Praeger Publication, New York, USA.Google Scholar
  12. Jury, W. A., Bellantuoni, B., 1976. Heat and water movement under surface in a field soil: I. Thermal effects. Soil Sci. Soc. Am. J. 40, 505–509.Google Scholar
  13. Kappen, L., Lange, O. L., Schulze, E.D., Evenari, M., Buschbom, V., 1979. Ecophysiological investigations on lichens of the Negev Desert: IV. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora, 168, 85–105.Google Scholar
  14. Kaseke, K.F., Esler, K.J., Mils, A.J., Brown, R., Henschel, J., Seely, M.K., 2010. A method for the direct assessment of the “non rainfall” atmospheric water cycle: input and evaporation from the soil. Journal of Pure and Applied Geophysics, doi:  10.1007/s00024-011-0328-9
  15. Katra, I., Lavee, H., Sarah, P., 2008. The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. Catena, 72, 49–55.Google Scholar
  16. Kemper, W. D., Nicks, A. D., Corey, A. T., 1994. Accumulation of water in soils under gravel and sand mulches. Soil Sci. Soc. Am. J. 58, 56–63.Google Scholar
  17. Kidron, G.J., 2000. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highlands, Israel. Atmos. Res. 55, 257–270.Google Scholar
  18. Kosmas, C., Danalatos, N.G., Poesen, J., van Wesemael, B., 1998. The effect of vapour adsorption on soil moisture content under Mediterranean climatic conditions. Agri. Water Mgmt. 36, 157–168.Google Scholar
  19. Kosmas, C., Marathianou, Gerontidis, St., Detsis, V., Tsara, M., Poesen, J. 2001. Parameters affecting water vapour adsorption by the soil under semiarid climatic conditions. Agri. Water Mgmt. 48, 61–78Google Scholar
  20. Li, X. Y., Gong, J. D., Gao, Q. Z., Wei, X.H., 2000. Rainfall interception loss by pebble mulch in the semi arid region of China. J. Hydro. 228, 165–173.Google Scholar
  21. Li, X. Y., 2002. Effects of gravel and sand mulches on dew deposition in the semiarid region of China. J. Hydro. 260, 151–160.Google Scholar
  22. Louw, G.N., Seely, M.K., 1982. Ecology of Desert Organisms. Longman House, Essex, United KingdomGoogle Scholar
  23. Malek, E., McCurdy, G., Giles, G., 1999. Dew contribution to the annual water balances in semi-arid desert valleys. J. Arid Environ. 42, 71–80.Google Scholar
  24. Matznetter, J., 1958. Die Kanarischen Inseln. In: Graf, A., Kuttler, W., Werner, J., 2008. Mulching as a means of exploiting dew for arid agriculture? Atmos. Res. 87, 369–376.Google Scholar
  25. Whitford, W. G., 2002. Ecology of desert systems. Elsevier Science Ltd.Google Scholar
  26. Schmiedel, U., Jurgens, N., 2004. Habitat ecology of southern African quartz fields: studies on the thermal properties near the ground. Plant Ecology, 153, 153–166.Google Scholar
  27. Stone, E.C., 1963. The ecological importance of dew. The Quartely Rev. Bio. 38, 328–341.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • K. F. Kaseke
    • 1
    • 3
    • 6
  • A. J. Mills
    • 2
  • J. Henschel
    • 3
  • M. K. Seely
    • 4
  • K. Esler
    • 1
  • R. Brown
    • 5
  1. 1.Department of Conservation EcologyStellenbosch UniversityMatielandSouth Africa
  2. 2.Department of Soil ScienceStellenbosch UniversityMatielandSouth Africa
  3. 3.Gobabeb Research CentreWalvis BayNamibia
  4. 4.Desert Research Foundation of NamibiaWindhoekNamibia
  5. 5.Climate Systems Analysis GroupUniversity of Cape TownRondeboschSouth Africa
  6. 6.ChitungwizaZimbabwe

Personalised recommendations