Pure and Applied Geophysics

, Volume 169, Issue 5–6, pp 1093–1106 | Cite as

Environmental Role of Rime Chemistry at Selected Mountain Sites in Poland

  • Michał Godek
  • Marek Błaś
  • Mieczysław Sobik
  • Żaneta Polkowska
  • Katarzyna Cichała-Kamrowska
  • Jacek Namieśnik


The results of field experiments on fog pollutant deposition enhanced by local mountain climate, completed by the dendrochronological analysis of the forest response, are presented in this paper. In spite of their low absolute altitude (1,000–1,600 m a.s.l), the Sudetes and the Silesian Beskid form a noticeable orographic barrier for the airflow of the humid Atlantic air masses. This results in the increase of cloudiness and fog frequency as well as both atmospheric precipitation and horizontal precipitation volume. Between January and December 2009 the daily samples of atmospheric precipitation and rime were collected on three selected mountain tops of similar height. The selected measurement sites were situated along a 300 km WNW-ESE profile parallel to the direction of the prevailing atmospheric circulation. High day-to-day variability of rime water volume, the total ionic content and chemical composition of the individual samples were typical of each measurement site and depended on the emission patterns, synoptic situation and the local climatic conditions influenced chiefly by terrain relief. Significantly larger rime efficiency and pollution deposition via fog were observed at the westernmost Szrenica Mt site rather than more to the southeast at Śnieżnik Mt and Skrzyczne Mt. This difference should be explained by more intense orographic deformation of predominant airflow from the western sector as well as the higher liquid water content of fog in the vicinity of Szrenica. Both temporal and spatial variability of fog deposition correlates closely with the health status of the drilled trees of Norway Spruce (Picea Abies) in the Śnieżnik Massif. The averaged annual tree rings width near the local tree line (1,350 m a.s.l.) on the summit dome of Śnieżnik decreased by 71% between 1950 and the early 1980s. This is also the area of the highest rate of atmospheric pollutant deposition due to particularly important role of fog. At an altitude of 1,200 m a.s.l. The relevant changes of ring width were different depending on slope aspect: 60% on western slopes well exposed for orographic fog formation and 42% on eastern slopes where fog deposition is less intense. The results of the dendrochronological analysis provide the evidence for the upward trend of tree rings width since 1981–1984 break through up to date, which should be attributed to the progressive reduction of pollutant emission in Central Europe.


Air pollution fog deposition rime mountain climate total ionic content spruce dendrochronology 



This scientific work was financially supported by the Polish Ministry of Science and Higher Education between 2008 and 2010 as a research project (N N305 231035).


  1. Agren, Ch. (1988), Critical loads. Figures continuing downwards, Acid News 3, 1–4.Google Scholar
  2. Baranowski, S., and Liebersbach, J. (1978), The intensity of different kinds of rime on the upper tree line in the Sudety Mountains, J Glaciol. 19, 489–497.Google Scholar
  3. Błaś, M., and Sobik. (2003) Natural and human impact on pollutant deposition in mountain ecosystems of the Sudetes, In Man and climate in the XX century (ed. Pyka, J.) (Acta Univ. Wratisl. 2542, Studia Geograficzne 75, Wrocław), pp. 420–438.Google Scholar
  4. Błaś, M., and Sobik, M. (2000), Fog in the Giant Mountains and selected European massifs, Opera Corcontica 37, 35–46.Google Scholar
  5. Błaś, M., and Sobik, M. (2004), The distribution of fog frequency in the Carpathians, Geographia Polonica—General and Applied Climatology: Selected Aspects 77, 19–34.Google Scholar
  6. Błaś, M., Sobik, M., Quiel, F., and Netzel, P. (2002), Temporal and spatial variations of fog in the Western Sudety Mts., Poland, Atmos. Res. 64, 19–28.Google Scholar
  7. Błaś, M., Sobik, M., and Twarowski, R. (2008) Changes of cloud water chemical compositions in the Western Sudety Mountains, Poland, Atmos. Res. 87, 224–231.Google Scholar
  8. Błaś, M., Polkowska, Ż., Sobik, M., Klimaszewska, K., Nowiński, K., and Namieśnik, J. (2010), Fog water chemical composition in different geographic regions of Poland, Atmos. Res. 95, 455–469.Google Scholar
  9. Chowaniec, J. (1991) Region karpacki, In Budowa Geologiczna Polski, vol. VII Hydrogeologia (Ed. Malinowki, J.) (Wydawnictwa Geologiczne, Warszawa), pp. 204–215.Google Scholar
  10. Danek, M. (2007), The influence of industry on scots pine stands in the south-eastern part of the Silesia-Kraków Upland (Poland) on the basis of dendrochronological analysis, Water Air Soil Pollut. 185, 265–277.Google Scholar
  11. Dore, A.J., Choularton T.W., Brown, R., and Blackall, R.M. (1992), Orographic rainfall enhancement in the mountains of the Lake District and Snowdonia, Atmos. Environ. 26A, 357–371.Google Scholar
  12. Drukman, I., Migała, K., and Sobik, M. (1997) Selected Characteristics of wind speed structure in the West Karkonosze Mts., In Climatological Aspects of environment protection in mountain areas (ed. Migała, K.). Acta Univ. Wratisl., Prace Instytutu Geograficznego, s. C, Meteorologia i Klimatologia, IV, Wrocław) pp. 67–73.Google Scholar
  13. Elbert, W., Hoffmann, M.R., Kramer, M., Schmitt, G., and Andreae, M.O. (2000), Control of solute concentrations in cloud and fog water by liquid water content, Atmos. Environ. 34, 1109–1122.Google Scholar
  14. EMEP Data Report, Acidifying and eutrophying compounds and particulate matter (Norwegian Institute for Air Research 2010).Google Scholar
  15. EMEP Status Report, Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2008 (Norwegian Meteorological Institute 2010).Google Scholar
  16. Feliksik, E. (1995), Dendrochronological monitoring of the threat to the forest of Western Beskids created by industrial immisions, Zpravodaj Beskydy 7, 23–34.Google Scholar
  17. Feliksik, E., and Wilczyński, S. (2003), Tree ring as indicators of environmental change, Electronic Journal of Polish Agricultural Universities, series Forestry 6/2.Google Scholar
  18. Ferretti, M., Innes, J.L., Jalkanen, R., Saurer, M., Schäffer, J., Spiecker, H., and von Wilpert, K. (2002), Air pollution and environmental chemistry—what role for tree-ring studies? Dendrochronologia. 20, 159–174.Google Scholar
  19. Fritts, H.C., Tree Rings and Climate (Academic Press, London 1976).Google Scholar
  20. Godek, M., Migała, K., and Sobik M. (2009), Air pollution and forest disaster in the Western Sudetes in the light of high elevation spruce tree ring data, TRACE Tree Rings in Archeology, Climatology and Ecology, Procc. of the DENDROSYMPOSIUM 2008, Zakopane. 7, 121–126.Google Scholar
  21. Huettl, R.F., and Mueller-Dombois, D. (1993) Forest decline in the Atlantic and Pacific Region (Springer Verlag, Berlin).Google Scholar
  22. Igawa, M., Matsumura, K., and Okochi, H. (2001), Fog water chemistry at Mt. Oyama and its dominant factors, Water Air Soil Pollut. 130, 607–612.Google Scholar
  23. Jała, Z., and Błaś, M. (2000), Choisen chemical characters of soils against a background of a wet deposition of air pollution in the Sudetes, Opera Corcontica 37, 69–78.Google Scholar
  24. Jones, A., Choularton, T.W. (1988), A model of wet deposition to complex terrain, Atmos. Environ. 22 (11), 2419–2430.Google Scholar
  25. Kim, D.S., and Aneja, V.P. (1992), Chemical composition of clouds at Mount Mitchell, North Carolina, Tellus 44B, 41–53.Google Scholar
  26. Krąpiec, M., and Szychowska-Krąpiec E. (2001), Tree-ring estimation of the effect of industrial pollution on pine (Pinus sylvestris) and fir (Abies alba) in the Ojców National Park (Southern Poland), Nature Conservation 58: 33–42.Google Scholar
  27. Kryza, H., Kryza, J., and Marszałek, H. (2005) Wody podziemne Karkonoszy, In Karkonosze, Przyroda Nieożywiona i Człowiek (ed. Mierzejewski M. P.)(Wrocław) pp. 453–486.Google Scholar
  28. Kryza, M., Błaś, M., Dore, A.J., and Sobik, M. (2009) Application of a Lagrangian Model FRAME to estimate reduced nitrogen deposition and ammonia concentrations in Poland, In atmospheric ammonia: detecting emission changes and environmental impacts. Results of an expert workshop under the convention on long-range transboundary air pollution (ed. Sutton, M.A.) (Springer) pp. 357–366.Google Scholar
  29. Kryza, M., Błaś, M., Dore, A.J., and Sobik, M. (2010), Fine-resolution modeling of concentration and deposition of nitrogen and sulphur compounds for Poland—application of the FRAME model, Arch. Environ. Prot. 36(1), 49–62.Google Scholar
  30. Lovett, G.M. (1984), Rates and mechanism of cloud water deposition to a subalpine balsam fir forest, Atmos. Environ. 18, 361–371.Google Scholar
  31. Malik, I., Danek, M., and Krąpiec, M. (2009) Air pollution recorded in scots pine growing near a chemical plant, preliminary results and perspective (Upper Silesia, southern Poland), In trace tree rings in archeology, climatology and ecology, vol.8, Procc. of the DENDROSYMPOSIUM 2009, Otočec, Slovenia, (ed. Levanic, T.) (GFZ Potsdam, Scientific Technical Report STR, Potsdam) pp. 41–45.Google Scholar
  32. Matuszkiewicz, J.M. (2002) Zespoły leśne Polski (Wydawnictwo Naukowe PWN, Warszawa).Google Scholar
  33. Migała, K., Liebersbach, J., and Sobik, M. (2002), Rime in the Giant Mts. (The Sudetes, Poland), Atmos. Res. 64, 63–73.Google Scholar
  34. Mill, W. (2006), Temporal and spatial development of critical loads exceedance of acidity to Polish forest ecosystems in view of economic transformations and national environmental policy, Env. Sci. Pol. 9, 563–567.Google Scholar
  35. Mill, W.A., Schlama, A., Twarowski, R., Błachuta, J., and Stasyewski, T. (2003) Modelling and mapping of critical thresholds in Europe. CCE Status Report 2003, National Focal Centre Report—Poland (Bilthoven, Netherlands).Google Scholar
  36. Mitosek, G., Degórska, A., Iwanek, J., Przybylska, G., and Skotak, K. (2004) EMEP Assessment Report—Poland. (Institute of Environmental Protection, Warsaw).Google Scholar
  37. Möller, D. (1984), Estimation of the global man-made sulphur emission, Atmos. Environ. 18, 19–27.Google Scholar
  38. Moravčik, P., and Černý, M. (1995) Forest die-back affected regions of Czech Republic, In Acid Reign’95, acidification in the black triangle (ed. Grennfeld, P.) (Proceeding from the 5th International Conference on Acid Deposition, Göeteborg).Google Scholar
  39. Niedźwiedź, T. (2010) Kalendarz typów cyrkulacji atmosfery dla Polski południowej—zbiór komputerowy [Calendar of atmospheric circulation types for the Southern Poland—Internet database], (Uniwersytet Śląski, Katedra Klimatologii, Sosnowiec).Google Scholar
  40. Nilsson, J., and Grennfelt, P., Critical loads of Sulphur and Nitrogen (Nordic council of Ministers, Report, Copenhagen 1988) pp. 8–57.Google Scholar
  41. Olejarski, I., Oszako, T., and Hilszczańska, D. (2004), Evaluation of health status of forest ecosystems in Sudetes after ecological disaster with special regard to revitalization of forest soils and its influence on regeneration, Opera Corcontica 41, 421–433.Google Scholar
  42. Olendrzyński, K., Kargulewicz, I., Skośkiewicz, J., Dębski, B., Cieślińska, J., Olecka, A., Kanafa, M., Kania, K., and Sałek, P. (2009) Poland’s National Inventory Report 2009 (National Administration of the emission traiding Scheme, Institute of Environmental Protection, Warszawa,) pp. 189.Google Scholar
  43. Pahl, S., Winkler, P., Schneider, T., Arends, B., and Schell, D. (1994), Deposition of trace substances via cloud interception on a coniferous forest at Kleiner Feldberg, J Atmos. Chem. 19, 231–252.Google Scholar
  44. Pereyma, J., Sobik, M., Szczepankiewicz-Szmyrka, A., and Migała, K. (1997), Contemporary climatic conditions and topoclimatic differentiation of the Karkonosze Mts., Acta Univ. Wratisl., Prace Instytutu Geograficznego IV, 75–94.Google Scholar
  45. Polkowska, Ż., Astel, A., Walna, B., Małek, S., Mędrzycka, K., Górecki T., Siepak, J., and Namieśnik J. (2005), Chemometric analysis of rainwater and throughfall at several sites in Poland, Atmos. Environ. 39, 837–855.Google Scholar
  46. Schweingruber, F.H. (1996) Tree Rings and Environment Dendroecology (Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf).Google Scholar
  47. Schweingruber, F.H. (2007) Wood Structure and Environment (Springer Series in Wood Science, Berlin).Google Scholar
  48. Sobik, M. (1999) Meteorologiczne uwarunkowania zakwaszenia hydrometeorów w Karkonoszach (Unpublished Ph.D. Thesis, Wrocław, University of Wrocław).Google Scholar
  49. Sobik, M., Dore, A.J., and Migała, K. (1998) Influence of orography on wet deposition patterns in the Western Sudetes, In Geoecological Problems of the Karkonosze Mountains, Transborder Biosphere Reserve Karkonosze/Krkonoše, pp. 97–108.Google Scholar
  50. Strzyszcz, Z. (1995), Warunki glebowe a zamieranie drzewostanów w Karkonoskim Parku Narodowym, Geoekologiczne problemy Karkonoszy, Poznań, 89–94.Google Scholar
  51. Vinš, B., and Pollanschütz, J. (1977), Erkennung and Beurteilung immissionsgeschädigter Wälder anhand von Jahrringanalysen. [Identification and assessment of damaged forests on the basis of tree-ring analysis], Alg. Forstzeit. 6, 146–148.Google Scholar
  52. Wallen, C.C. (1977) World Survey of Climatology Volume 6—Climates of Central and Southern Europe (ed. Landsberg, H.E.) (World Meteorological Organisation, Geneva).Google Scholar
  53. Weathers, K.C., Lovett, G.M., and Likens, G.E. (1995), Cloud deposition to a spruce forest edge, Atmos. Environ. 29, 665–672.Google Scholar
  54. Wiśniowski, Z. (2001) Dendrochronologiczno-geochemiczna analiza przemysłowej degradacji środowiska na przykładzie lasów Puszczy Wkrzańskiej (aglomeracja szczecińska) (Państwowy Instytut Geologiczny, Warszawa).Google Scholar
  55. Wrzesinsky, T., and Klemm, O. (2000), Summertime fog chemistry at a mountainous site in central Europe, Atmos. Environ. 34, 1487–1496.Google Scholar
  56. Żelaźniewicz, A. (2005) Przeszłość geologiczna, In Przyroda Dolnego Śląska, (ed. Fabiszewski, J.) (PAN, Wrocław) pp. 61–134.Google Scholar
  57. Zimmermann, L., Zimmermann, F. (2002), Fog deposition to Norway Spruce stands at high-elevation sites in the Eastern Erzgebirge (Germany), J Hydrol. 256, 166–175.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Michał Godek
    • 1
  • Marek Błaś
    • 1
  • Mieczysław Sobik
    • 1
  • Żaneta Polkowska
    • 2
  • Katarzyna Cichała-Kamrowska
    • 2
  • Jacek Namieśnik
    • 2
  1. 1.Department of Climatology and Atmosphere ProtectionUniversity of WroclawWroclawPoland
  2. 2.Department of Analytical ChemistryGdansk University of TechnologyGdanskPoland

Personalised recommendations