Pure and Applied Geophysics

, Volume 169, Issue 4, pp 615–623 | Cite as

Dead Sea Basin Imaged by Ambient Seismic Noise Tomography

  • Jacek Stankiewicz
  • Michael H. Weber
  • Ayman Mohsen
  • Rami Hofstetter
Article

Abstract

In the framework of the Dead Sea Integrated Research project (DESIRE), 59 seismological stations were deployed in the region of the Dead Sea Basin. Twenty of these stations recorded data of sufficiently high quality between May and September 2007 to be used for ambient seismic noise analysis. Empirical Green’s functions are extracted from cross-correlations of long term recordings. These functions are dominated by Rayleigh waves, whose group velocities can be measured in the frequency range from 0.1 to 0.5 Hz. Analysis of positive and negative correlation lags of the Green’s functions makes it possible to identify the direction of the source of the incoming energy. Signals with frequencies higher than 0.2 Hz originate from the Mediterranean Sea, while low frequencies arrive from the direction of the Red Sea. Travel times of the extracted Rayleigh waves were measured between station pairs for different frequencies, and tomographically inverted to provide independent velocity models. Four such 2D models were computed for a set of frequencies, all corresponding to different sampling depths, and thus together giving an indication of the velocity variations in 3D extending to a depth of 10 km. The results show low velocities in the Dead Sea Basin, consistent with previous studies suggesting up to 8 km of recent sedimentary infill in the Basin. The complex structure of the western margin of the Basin is also observed, with sedimentary infill present to depths not exceeding 5 km west of the southern part of the Dead Sea. The high velocities associated with the Lisan salt diapir are also observed down to a depth of ~5 km. The reliability of the results is confirmed by checkerboard recovery tests.

Keywords

Dead Sea Basin ambient noise tomography 

References

  1. Al-Zoubi, A., Shulman, H. and Ben-Avraham, Z. (2002). Seismic reflection profiles across the southern Dead Sea basin. Tectonophysics, 346, 61–69.Google Scholar
  2. Arroucau, P., Rawlinson, N. and Sambridge, M. (2010). New insight into Cainozoic sedimentary basins and Palaeozoic suture zones in southeast Australia from ambient noise surface wave tomography. Geophys. Res. Lett., 37, L07303, doi:10.1029/2009GL041974.
  3. Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M. and Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169, 1239–1260, doi:10.1111/j.1365-246X.2007.03374.x.
  4. Bräuer, B. (2011). The structure of the southern Dead Sea basin revealed from local earthquake data. PhD thesis, Freie Universität Berlin, Germany.Google Scholar
  5. Bräuer, B., Weber, M., Asch, G., Haberland, C., Hofstetter, A., El-Kelani, E. and Darwish, Y. (2009). Seismicity as a key to Understanding the Dead Sea Transform Fault—Results From a Temporary Dense Seismic Network in the Southern Dead Sea Basin. EOS Transactions, AGU, Fall Meeting Suppl. 90, 52.Google Scholar
  6. Duvall, T.L., Jefferies, S.M., Harvey, J.W. and Pomerantz, M.A. (1993). Time-distance helioseismology. Nature, 362, 430–432.Google Scholar
  7. Ezersky, M. (2006). The seismic velocities of the Dead Sea salt applied to the sinkhole problem. J. Appl. Geophys., 58, 45–58, doi:10.1016/j.jappgeo.2005.01.003.
  8. Garfunkel, Z. (1981). Internal structure of the Dead Sea leaky transfrom (rift) in relation to plate kinematics. Tectonophysics, 80, 81–108.Google Scholar
  9. Garfunkel, Z. and Ben-Avraham, Z. (1996). The structure of the Dead Sea basin. Tectonophysics, 266, 155–176.Google Scholar
  10. Garfunkel, Z., Zak, I. and Freund, R., (1981). Active faulting in the Dead Sea rift. Tectonophysics, 80, 1–26.Google Scholar
  11. Gudmundsson, O., Khan, A. and Voss, P. (2007). Rayleigh wave group velocity of the Icelandic crust from correlation of ambient seismic noise. Geophys. Res. Lett., 34, L14314, doi:10.1029/2007GL030215.
  12. Hofstetter, A., Dorbath, C., Rybakov, M. and Goldshmidt, V. (2000). Crustal and upper mantle structure across the Dead Sea rift and Israel from teleseismic P wave tomography and gravity data. Tectonophysics, 327, 37–59.Google Scholar
  13. Kashai, E.L. and Croker, P.F. (1987). Structural geology and evolution of the Dead Sea—Jordan rift system as deduced from new subsurface data. Tectonophysics, 141, 33–60.Google Scholar
  14. Klinger, Y., Avouac, L., Dorbath, L., Karaki, N.A. and Tisnerat, N. (2000). Seismic behaviour of the Dead Sea Fault along Araba valley, Jordan. Geophys. J. Int., 142, 769–782.Google Scholar
  15. Lévêque, J.-J., Rivera and L., Wittlinger, G. (1993). On the use of checker-board test to assess the resolution of tomographic inversions. Geophysical Journal International, 115, 313–318.Google Scholar
  16. Mechie, J., Abu-Ayyash, K., Ben-Avraham, Z., El-Kelani, R., Qabbani, I, Weber, M. and DESIRE Group (2009). Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data. Geophys. J. Int., 178, 457–478, doi:10.1111/j.1365-246X.2009.04161.x.
  17. Mohsen, A., Asch, G., Mechie, J., Kind, R., Hofstetter, R., Weber, M, Stiller, M. and Abu-Ayyash, K. (2011). Crustal structure of the Dead Sea Basin (DSB) from a receiver function analysis. Geophys. J. Int., 184, 463–476, doi:10.1111/j.1365-246X.2010.04853.x.
  18. Pedersen, H.A., Krüger, F. and the SVEKALAPKO Seismic Tomography Working Group (2007). Influence of the seismic noise characteristics on noise correlations in the Baltic shield. Geophys. J. Int., 168, 197–210.Google Scholar
  19. Quennell, A.M. (1958). The structural and geomorphic evolution of the Dead Sea rift. Q. J. Geol. Soc. Lond., 114, 2–24.Google Scholar
  20. Rawlinson, N. and Sambridge, M. (2004). Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics, 69(5), 1338–1350, doi:10.1190/1.1801950.
  21. Rawlinson, N. and Sambridge, M. (2005). The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex media. Exploration Geophysics, 36, 341–350, doi:10.1071/EG05341.
  22. Reches, Z. (1987). Mechanical aspects of pull-apart basins and push-up swells with applications to the Dead Sea Transform. Tectonophysics, 141, 75–88.Google Scholar
  23. Ritzwoller, M.H. and Levshin, A.L. (1998). Eurasian surface wave tomography: Group velocities. J. Geophys. Res., 103, B3, 4839–4878.Google Scholar
  24. Sagy, A., Reches, Z. and Agnon, A. (2003). Hierarchic three-dimensional structure and slip partitioning in the western Dead Sea pull-apart. Tectonics, 22(1), 1004, doi:10.1029/2001TC001323.
  25. Saygin, E. and Kennett, B.L.N. (2010). Ambient seismic noise tomography of Australian continent. Tectonophysics, 481, 116–125, doi:10.1016/j.tecto.2008.11.013.
  26. Sethian, J.A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Science, 93, 1591–1595.Google Scholar
  27. Shapiro, N.M. and Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31, L07614, doi:10.1029/2004GL019491.
  28. Shapiro, N.M., Campillo, M., Stehly, L. and Ritzwoller, M.H. (2005). High-resolution surface wave tomography from ambient seismic noise. Science, 307, 1615–1618.Google Scholar
  29. Stankiewicz, J., Ryberg, T., Haberland, C., Fauzi and Natawidjaja, D. (2010). Lake Toba volcano magma chamber imaged by ambient seismic noise tomography. Geophys. Res. Lett., 37, L17306, doi:10.1029/2010GL044211.
  30. ten Brink, U.S., Ben-Avraham, Z., Bell, R.E., Hassouneh, M., Coleman, D.F., Andreasen, G., Tibor, G. and Coakley, B. (1993). Structure of the Dead Sea pull-apart Basin from gravity analyses. J. Geophys. Res., 98 (B12), 21,877–21,894.Google Scholar
  31. ten Brink, U.S., Al-Zoubi, A.S., Flores, C.H., Rotstein, Y., Qabbani, I., Harder, S.H. and Keller, G.R. (2006). Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault: implications for strain localization and crustal rigidity. Geophys. Res. Lett., 33, L24314, doi:10.1029/2006GL027890.
  32. Weaver, R.L. and Lobkis, O.I. (2001). Ultrasonics without a source: Thermal fluctuation correlation at MHz frequencies. Phys. Rev. Lett., 87, 134301.Google Scholar
  33. Weber, M.H. et al. (2004). The crustal structure of the Dead Sea Transform. Geophys. J. Int., 156, 655–681, doi:10.1111/j.1365-246X.2004.02143.x.
  34. Weber, M. H. et al. (2009). Anatomy of the Dead Sea Transform from lithospheric to microscopic scale. Rev. Gophys., 47, RG2002.Google Scholar
  35. Yang, Y., Li, A. and Ritzwoller, M.H. (2008). Crustal und uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography. Geophys. J. Int., 174, 235–248. doi:10.1111/j.1365-246X.2008.03779.x.
  36. Zak, I. and Freund, R. (1981). Asymmetry and basin migration in the Dead Sea Rift. Tectonophysics, 80, 27–38.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Jacek Stankiewicz
    • 1
  • Michael H. Weber
    • 1
    • 2
  • Ayman Mohsen
    • 1
    • 3
  • Rami Hofstetter
    • 4
  1. 1.Deutsches GeoForschungsZentrum-GFZPotsdamGermany
  2. 2.Institut für GeowissenschaftenUniversität PotsdamPotsdamGermany
  3. 3.Al-Najah National UniversityNablusPalestine
  4. 4.Geophysical InstituteLodIsrael

Personalised recommendations