Pure and Applied Geophysics

, Volume 169, Issue 4, pp 711–723 | Cite as

Ground-Motion Hazard Values for Northern Algeria

  • M. HamdacheEmail author
  • J. A. Peláez
  • A. Talbi
  • M. Mobarki
  • C. López Casado


This study examines distinctive features of ground motion parameters in northern Algeria. An initial computation of seismic hazard in terms of horizontal peak ground acceleration (PGA) and spectral acceleration (SA) at different periods, damped at 5%, is carried out for three different types of soils (rock, stiff soils and soft soils) for return periods of 100 and 475 years. In addition, uniform hazard spectra (UHS) are computed for these two return periods at several locations in the region. Then, the UHS computed for different soil types are proposed as a starting point to define elastic design spectra for building-code purposes. We have used the well-known Newmark-Hall approach. As proposed in the most recent International Building Codes, the SA (0.2 s) value is used to establish the spectral region for lower periods (region controlled by acceleration), whereas the SA (1.0 s) value is used to establish the spectral region for intermediate periods (region controlled by velocity). We also obtained important relations, dependent on site condition, between SA (0.2 s), SA (1.0 s) or SAmax values, and the PGA, for both return periods of 100 and 475 years. Other relationships between PGA or SAmax values have also been derived for return periods of 100 and 475 years, in this case independent of site condition.


Seismic hazard uniform hazard spectra elastic design spectra spectral acceleration peak ground acceleration 



This research was supported by the Algerian C.R.A.A.G. and the Spanish Seismic Hazard and Active Tectonics research group. The authors thank Editor Andrzej Kijko for his careful review and comments.


  1. Ambraseys, N.N., Simpson, K.A., and Bommer, J.J. (1996). Prediction of horizontal response spectra in Europe. Earthquake Eng. Struct. Dyn. 25, 371-400.Google Scholar
  2. Aoudia, A., Vaccari, F., Suhadolc, P., and Meghraoui, M. (2000). Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria. J. Seismol. 4, 79-98.Google Scholar
  3. Argus, D.F., Gordon, R.G., de Mets, C., and Stein, S. (1989). Closure of the AfricaEurasiaNorth America plate motions circuit and tectonics of the Gloria fault. J. Geophys. Res. 94, 5585-5602.Google Scholar
  4. Ayadi, A., Dorbath, C., Ousadou, F., Maouche, S., Chikh, M., Bounif, M.A., and Meghraoui, M. (2008). Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model. J. Geophys. Res. 113, B09301, doi: 10.1029/2007JB005257.
  5. Benjamin, J.R., and Cornell, C.A. (1970). Probability, Statistics, and decision for Civil Engineers. McGraw-Hill, New York.Google Scholar
  6. Benouar, D. (1994). An earthquake catalog for the Maghreb region 20°-38° N, 10°W-12°E for the period 1900-1990. Annali di Geofisica 37, 511-528.Google Scholar
  7. Bezzeghoud, M., and Buforn, E. (1999). Source parameters of the 1992 Melilla (Spain, Mw = 4.8), 1994 Alhoceima (Morocco, Mw = 5.8), and 1994 Mascara (Algeria, Mw = 5.7) earthquakes and seismotectonic implications. Bull. Seism. Soc. Am. 89, 359-372.Google Scholar
  8. Boore, D.M., Joyner, W.B., and Fumal, T.E. (1994). Estimation of response spectra and peak accelerations from western North American earthquakes; an interim report; Part 2. USGS Open-File Report 94-127, Denver, Colorado.Google Scholar
  9. CRAAG (1994). Les séismes en Algerie de 1365 à 1992. Centre de Recherche en Astronomie, Astrophysique et de Géophysique (Benhallou, H., and Bezzeghoud, M., eds.) Algiers, Algeria.Google Scholar
  10. Ebeling, R.M. (1992). Introduction to the computation of response spectrum for earthquake loading. Department of the Army, USA, Technical Report ITL-92-4.Google Scholar
  11. EC-8 (1998). Design provisions for earthquake resistance of structures - Part 1-1: General rules. Seismic actions and general requirements for structures. European Prestandard ENV 1998-1-1. Comité Européen de Normalisation, Brussels.Google Scholar
  12. EPRI (1986). Seismic hazard methodology for the central and eastern United States. Electric Power Research Institute, Report NP-4726, Palo Alto, CA.Google Scholar
  13. Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seismol. Res. Lett. 66, 8-21.Google Scholar
  14. Hamdache, M. (1998). Seismic hazard assessment for the main seismogenic zones in north Algeria. Pure Appl. Geophys. 152, 281-314.Google Scholar
  15. Hamdache, M., Bezzeghoud, M., and Mokrane, A. (1998). Estimation of seismic hazard parameters in the northern part of Algeria. Pure Appl. Geophys. 151, 101-117.Google Scholar
  16. Hamdache, M., and Retief, S.J.P. (2001). Site-specific seismic hazard estimation in the main seismogenic zones of north Algeria. Pure Appl. Geophys. 158, 1677-1690.Google Scholar
  17. Hamdache, M., Peláez, J.A., and Yelles Chauche, A.K. (2004). The Algiers, Algeria earthquake (M W 6.8) of 21 May 2003: preliminary report. Seismol. Res. Lett. 75, 360-367.Google Scholar
  18. Hamdache, M., Peláez, J.A., Mobarki, M., Bellalem, F., and López Casado, C. (2007). Seismic parameters estimation in Northern Algeria. Bulletin du Service Géologique National 18, 205-217.Google Scholar
  19. Hamdache, M., Pelaéz J.A., Talbi, A., and López Casado, C. (2010). A unified catalog of main earthquakes for Northern Algeria from A.D. 856 to 2008. Seism. Res. Lett. 81, 732-739.Google Scholar
  20. Henares, J., López Casado, C., Sanz de Galdeano, C., Delgado, J., and Peláez, J.A. (2003). Stress fields in the Iberian-Maghrebi region. J. Seismol. 7, 65-78.Google Scholar
  21. ICC (2009). International Building Code 2009. International Code Council, USA.Google Scholar
  22. López Casado, C., Molina, S., Giner, J.J., and Delgado, J. (2000). Magnitude-intensity relationships in the Ibero-Magrebhian region. Nat. Hazards 22, 269-294.Google Scholar
  23. Malhotra, P.K. (2005). Return period of design ground motions. Seismol. Res. Lett. 76, 693-699.Google Scholar
  24. Meghraoui, M. (1986). Seismotectonics of the lower Cheliff Bassin. Structural background of the El Asnam (Algeria) earthquake. Tectonics 5, 809-836.Google Scholar
  25. Mezcua, J., and Martínez Solares, J.M. (1983). Seismicity of the Ibero-Moghrebian region (in Spanish). IGN Report. Madrid, Spain.Google Scholar
  26. Newmark, N.M., and Hall, W.J. (1982). Earthquake spectra and design. Earthquake Engineering Research Institute Monograph Series no. 3, Berkeley, California, USA.Google Scholar
  27. Peláez, J.A., Hamdache, M., and López Casado, C. (2003). Seismic hazard in northern Algeria using spatially smoothed seismicity. Tectonophysics 372, 105-119.Google Scholar
  28. Peláez, J.A., Hamdache, M., and López Casado, C. (2005). Updating the probabilistic seismic hazard values of northern Algeria with the 21 May 2003 M 6.8 Algiers earthquake included. Pure Appl. Geophys. 162, 2163-2177.Google Scholar
  29. Peláez, J.A., Hamdache, M., and López Casado, C. (2006). Seismic hazard in terms of spectral accelerations and uniform hazard spectra in northern Algeria. Pure Appl. Geophys. 163, 119-135.Google Scholar
  30. RPA (2003). Règles Parasismiques Algériennes 2003. Centre National de Recherche Apliquée en Génie Parasismique, Algiers, Algeria.Google Scholar
  31. Wen, Y.K. (2004). Probabilistic aspects of earthquake engineering in Earthquake engineering. From engineering seismology to performance-based engineering (Bozorgnia, Y., and Bertero, V.V., eds.), CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • M. Hamdache
    • 1
    Email author
  • J. A. Peláez
    • 2
  • A. Talbi
    • 1
  • M. Mobarki
    • 1
  • C. López Casado
    • 3
  1. 1.Départment d’Études et Surveillance SismiqueCentre de Recherche en Astronomie, Astrophysique et de GéophysiqueAlgiersAlgeria
  2. 2.Department of PhysicsUniversity of JaénJaénSpain
  3. 3.Department of Theoretical PhysicsUniversity of GranadaGranadaSpain

Personalised recommendations