Pure and Applied Geophysics

, Volume 169, Issue 1–2, pp 235–248 | Cite as

One-Dimensional Thermal Modeling of the Eastern Pontides Orogenic Belt (NE Turkey)



The eastern Pontides orogenic belt is one of the most complex geodynamic settings in the Alpine–Himalayan belt due to the lack of systematical geological and geophysical data. In this study, 1D crustal structure and P-wave velocity distribution obtained from gravity modeling and seismological data in the area has been used for the development of the thermal model of the eastern Pontides orogenic belt. The computed temperature-depth profiles suggest a temperature of 590 ± 60°C at a Moho depth of 35 km indicates the presence of a brittle-ductile transition zone. This temperature value might be related to water in the subducted crust of the Tethys oceanic lithosphere. The Curie temperature depth value of 29 km, which may correspond to the crustal magma chambers, is found 5–7 km below the Moho depth. Surface heat flow density values vary from 66.5 and 104.7 mW m−2. High mantle heat flow density value of 48 mW m−2 is obtained for the area should be related to melting of the lithospheric mantle caused by upwelling of asthenosphere.


Heat flow heat production thermal models Eastern Pontides 



I would like to thank the General Directorate of the Mineral Research and Exploration (MTA) of Turkey for providing aeromagnetic data. I express my thanks Dr. Y. Eyüboğlu (Gümüşhane University), Dr. M.Nuri Dolmaz (Süleyman Demirel University) and anonymous referees for their thorough critical and constructive comments. The author is grateful to Brian Mitchell for his valuable comments and editorial advice to improve the quality of this manuscript.


  1. Adamia, S., Lordkipanidze, M.B., Zakariadze, G.S., 1977. Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics 40, 183–89.Google Scholar
  2. Al-Lazki, A., Sandvol, E., Seber, D., Türkelli, N., Mohamad, R., Barazangi, M. 2003. Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern Turkey) and the surrounding regions. Geophysical Research Letters 30, 8043.Google Scholar
  3. Angus, D.A, David, C., Wilson, E., Sandvol, E. 2006. Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions. Geophysical Journal International 166, 1335–1346.Google Scholar
  4. Ateş, A., Bilim, F., Büyüksaraç, A. 2005. Curie point depth investigation of Central Anatolian Turkey. Pure and Applied Geophysics 162, 357–371.Google Scholar
  5. Aydin, F., 2003. Mineral chemistry, petrology and petrogenesis of the Degirmendere Valley volcanics (Trabzon–Esiroglu, NE-Turkey). PhD thesis. Karadeniz Technical University, Trabzon, Turkey (in Turkish with English abstract, unpublished).Google Scholar
  6. Aydin, I., Karat, H.I., Koçak, A. 2005. Curie-point depth map of Turkey. Geophysical Journal International 162, 633–640.Google Scholar
  7. Aydin, F., Karsli O., Chen, B. 2008. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos 104, 249–266.Google Scholar
  8. Aydin F., Thompson R.M., Karsli O., Uchida H., Burt J.B., Downs R.T. 2009. C2/c pyroxene phenocrysts from three potassic series in the Neogene alkaline volcanics, NE Turkey: their crystal chemistry with petrogenetic significance as an indicator of P-T conditions. Contributions to Mineralogy and Petrology 158, 131–147.Google Scholar
  9. Barazangi, M., Sandvol, E., Seber, D. 2006. Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. In: Dilek , Y. P avlides, S. (eds), Post-collisional tectonics and magmatism in the Mediterrenean region and Asia: GSA, special issue, 409, 463–474.Google Scholar
  10. Bektaş, O., 1986. Paleostress trajectories and polyphase rifting in arc-back arc of Eastern Pontides. Mineral Research and Exploration Institute (MTA) Bulletin 103/104, 1–15.Google Scholar
  11. Bektas, O., Van, A., Boynukalin, S., 1987. Jurassic volcanism and its geotectonics in the eastern Pontides (NE Turkey). Geological Bulletin of Turkey 30, 9–18.Google Scholar
  12. Bektaş, O., Yilmaz, C., Tasli, K., Akdağ, K., Özgür, S. 1995. Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): The formation of carbonates breccias and turbidites as evidences of a drowned platform. Geologia 57, 233–244.Google Scholar
  13. Bektaş, O., Şen, C., Atici, Y., Köprübaşi, N. 1999. Migration of the upper cretaceous subduction-related volcanism towards the back-arc basin of the Eastern Pontide magmatic arc (NE Turkey). Geological Journal 34, 95–106.Google Scholar
  14. Bektaş¸ Ö., Ravat, D., Büyüksaraç¸ A., Bilim, F., Ateş¸ A. 2007. Regional geothermal characterization of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics 164, 975–998.Google Scholar
  15. Birch, F., Roy, R.F., Decker, E.R. 1968. Heat flow and thermal history in New England and New York. In: Z en , E., W hite, W.S., H adley , J.B.T hompson J., J.B.r (Eds.), Studies of Appalachian Geology: Northern and Maritime. Interscience, New York, pp. 437–451.Google Scholar
  16. Bozkurt, E., 2001. Neotectonics of Turkey—a synthesis. Geodinamica Acta 14, 3–30.Google Scholar
  17. Cermak, V., Bodri, L. 1986. Tow-dimensional temperature modeling along five east-European geotraverses. Journal of Geodynamics 5, 133–163.Google Scholar
  18. Cermak, V., Bodri, L., Rybach, L. 1991. Radioactive heat production in the continental crust and its depth dependence. In: Cermak, V. and Rybach, L. (eds.), Terrestrial Heat Flow and the Lithosphere Structure (Springer-Verlag, New York, 1991) pp. 23–69.Google Scholar
  19. Channell, J.E.T., Tüysüz, O., Bektaş, O., Şengör, A.M.C. 1996. Jurassic-Cretaceous paleomagnetism and paleogeography of the Pontides (Turkey). Tectonics 115, 201–212.Google Scholar
  20. Chorowicz, J., Dhont, D., Adiyaman, Ö. 1998. Black sea Pontide relationship: interpretation in terms of subduction, Third International Turkish Geology Symposium, Abstracts, p.258.Google Scholar
  21. Christensen N.I., Mooney, W.D. 1995. Seismic velocity structure and composition of the continental crust: a global view. Journal of Geophysical Research 100, 9761–9788.Google Scholar
  22. Correia, A., Jones, F.W. 1995. A magnetotelluric survey in a reported geothermal area in southern Portugal. Proc. World Geothermal Congr. 2, 927–931.Google Scholar
  23. Çakir, Ö., Erduran, M., Çınar, H., Yılmaztürk, A. 2000. Forward modelling receiver functions for crustal structure beneath station TBZ (Trabzon, Turkey). Geophysical Journal International 140, 341–356.Google Scholar
  24. Çakir, Ö., Erduran, M. 2004. Constraining crustal and uppermost structure beneath station TBZ (Trabzon,Turkey) by receiver function and dispersion analyses. Geophysical Journal International 158, 955–971.Google Scholar
  25. Çinku, M.C., Ustaömer, T., Hirt, A.M., Hisarli, Z.M., Heller, F., Orbay, N., 2010. Southward migration of arc magmatism during latest Cretaceous associated with slab steepening, East Pontides, N Turkey: New paleomagnetic data from the Amasya region, Physic of the Earth Planetary Interiors 182, pp. 18–29.Google Scholar
  26. Dewey, J.F., Pitman, W.C., Ryan, W.B.F., Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geol. Soc. Am. Bull. 84, 3137–3180.Google Scholar
  27. Dokuz, A., 2011. A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey: The Köse composite pluton, Gondwana Research, doi: 10.1016/j.gr.2010.09.006.
  28. Dolmaz M.N. Hisarli Z.M. Ustaömer T., Orbay, N. 2005. Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province, Turkey. Pure and Applied Geophysics 162, 571–590.Google Scholar
  29. Eyüboğlu, Y., Bektaş, O., Şeren, A., Maden, N., Özer, R., Jacoby, W.R. 2006. Three-directional extensional deformation and formation of the liassic rift basins in the Eastern Pontides (NE Turkey). Geologica Carpathica 57, 337–346.Google Scholar
  30. Eyüboğlu, Y., Bektaş, O., Pul, D. 2007. Mid-Cretaceous olistostromal ophiolitic melange developped in the back-arc basin of the eastern pontide magmatic Arc (NE Turkey). International Geology Review 49, 1103–1126.Google Scholar
  31. Eyüboğlu, Y., 2010. Late cretaceous high-K volcanism in the eastern pontide orogenic belt: implications for the geodynamic evolution of NE Turkey. International Geology Review 52, 142–186.Google Scholar
  32. Eyüboğlu, Y., Dilek, Y., Bozkurt, E., Bektaş, O., Royaj, B. and Şen, C., 2010. Structure and Geochemistry of an Alaskan-type Ultramafic-Mafic Complex in the Eastern Pontides, NE Turkey. In: Santosh, M., Maruyama, S. (Eds.), A tribute to Akiho Miyashiro. Gondwana Research 18, 230–252.Google Scholar
  33. Eyüboğlu, Y., Chung, S.L., Santosh, M., Dudas, F.O. and Akaryali, E., 2011. Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: Implications for slab window melting. Gondwana Research 19, 413429. Google Scholar
  34. Hyndman, R.D., Lewis, T.J. 1999. Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada. Tectonophysics 306, 397–422.Google Scholar
  35. He, L., Hu, S., Yang, W., Wang, J. 2009. Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt. Earth and Planetary Science Letters 277, 525–538.Google Scholar
  36. Hisarli, Z.M., 2011. New Paleomagnetic Constraints on the late Cretaceous and early Cenozoic tectonic history of the Eastern Pontides, Journal of Geodynamics, doi: 10.1016/j.jog.2010.12.004.
  37. Gök, R., Sandvol, E., Türkelli, N., Seber, D., Barazangi, M. 2003. Sn attenuation in the Anatolian and Iranian plateaus and surrounding regions. Geophysical Research Letters 30, 8042.Google Scholar
  38. Gök, R., Pasyanos, M.E., Zor, E. 2007. Lithospheric structure of the continent-continent collision zone: eastern Turkey. Geophysical Journal International 169, 1079–1088.Google Scholar
  39. İlkişik, O.M., 1990. Heat flow pattern of Western Anatolia. XV General assembly EGS abstracts. Ann. Geophys., p. 55, special issue.Google Scholar
  40. İlkişik, O.M., 1992. Silica heat flow estimates and lithospheric temperature in Anatolia, Proceedings, XI. Congress of World Hydrothermal Organization, İstanbul, Mayıs 13–18, pp. 92–104.Google Scholar
  41. İlkişik, O.M., 1995. Regional heat flow in western Anatolia using silica temperature estimates from thermal springs, Tectonophysics, 244, 175–184.Google Scholar
  42. İlkişik, O.M., Öztürk, S., Şener, C., Tokgöz, T., 1995. Geothermic investigations in Turkey, Jeofizik, 9/1–2, 117–122 (in Turkish).Google Scholar
  43. Kaypak, B., Eyidoğan, H. 2005. One dimensional crustal structure of the Erzincan basin, eastern Turkey and relocations of the 1992 Erzincan earthquake (Ms=6.8) aftershock sequence. Physics of the Earth and Planetary Interiors 151, 1–20.Google Scholar
  44. Kissling, E. 1988. Geotomography with local earthquakes. Rev. Geophys. 26, 659–698.Google Scholar
  45. Kissling, E., Ellsworth, W.L., Eberhart-Phillips, D., Kradolfer, U. 1994. Initial reference models in local earthquake tomography. J. Geophys. Res. 99, 19635–19646.Google Scholar
  46. Koçak, A., 1989. Convective heat discharge map of Turkey prepared by using hot springs temperature, in Seminar on New Developments in Geothermal Energy, MTA, Ankara (unpublished).Google Scholar
  47. Lachenbruch, A.H., 1970. Crustal temperature and heat production: implication of the linear heat flow relationship. Journal of Geophysical Research 75, 3291–3300.Google Scholar
  48. Lauer, J.P., 1981. Orgine meridionale des Pontides d’apres de nouevaux resultats paleomagnetiques obtenus en Turqie. Bulletin de la Societe Geologique de France 23, 619–624.Google Scholar
  49. Maden, N., 2009. Crustal thermal properties deduced from spectral analysis of magnetic data in Central Pontides (Turkey). Turkish Journal of Earth Sciences 18, 383–392.Google Scholar
  50. Maden, N., 2010. Curie-point depth from spectral analysis of magnetic data in Erciyes stratovolcano (Central TURKEY). Pure and Applied Geophysics, 167, 349–358.Google Scholar
  51. Maden, N., Gelişli, K., Bektaş, O., Eyüboğlu, Y. 2009a. Two-and-three-dimensional crust topography of the Eastern Pontides (NE TURKEY). Turkish Journal of Earth Sciences 18, 225–238.Google Scholar
  52. Maden, N., Gelişli, K., Eyüboğlu, Y., Bektaş, O., 2009b. Determination of tectonic and crustal structure of the Eastern Pontide Orogenic Belt (NE Turkey). Pure and Applied Geophysics 166, 1987–2006.Google Scholar
  53. Mindevalli, Ö.Y., Mitchell, B.J. 1989. Crustal structure and possible anisotropy in Turkey from seismic surface wave dispersion. Geophysical Journal International 98, 93–106.Google Scholar
  54. Morgan, P., Sass, J.H., 1984. Thermal regime of the continental lithosphere. Journal of Geodynamics 1, 143-166.Google Scholar
  55. Pamukçu, O.A., Akçiğ, Z., Demirbaş, Ş., Zor, E., 2007. Investigation of crustal thickness in Eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics 164, 2345–2358.Google Scholar
  56. Pasquale, V., 1987. Possible thermal structure of the eastern part of the Central Alps. Nuovo Cimento 10C, 129–141.Google Scholar
  57. Pollack, H.N., Chapman, D.S., 1977. On the regional variation of heat flow, geotherms and lithosphere thickness. Tectonophysics 38, 279–396.Google Scholar
  58. Rao, R.U.M., Verma, R.K., Gupta, M.L., 1970. Heat flow at Dam and Mohapani, Satpura Gondwana basin India. Earth Planet. Sci. Lett. 7, 406–412.Google Scholar
  59. Rimi, A., 1999. Mantle heat flow and geotherms for the main geologic domains in Morocco. Int. Journ. Earth Sciences 88, 458–466.Google Scholar
  60. Rybach, L., 1976. Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure and Applied Geophysics 114, 309–318.Google Scholar
  61. Rybach, L., Buntebarth, G., 1982. Relationship between the petrophysical properties density, seismic velocity, heat genera-tion and mineralogical constitution. Earth Planet. Sci. Lett. 57, 367–376.Google Scholar
  62. Rybach, L., Buntebarth, G., 1984. The variation of heat gen-eration, density and seismic velocity with rock type in the continental crust. Tectonophysics 103, 309–344.Google Scholar
  63. Sandvol, E., Zor, E. 2004. Upper mantle P and S-wave velocity structure beneath eastern Anatolian plateau, EOS, Trans. Am. Geophys. Un., AGU Fall Meeting, S13B–1056.Google Scholar
  64. Saribudak, M., 1989. New results and a paleomagnetic overview of the Pontides in Northern Turkey. Geophysical Journal International 99, 521–531.Google Scholar
  65. Seber, D., Sandvol, E., Brindisi, C., Barazangi, M., 2001. Crustal model for the Middle East and North Africa region: implications for the isostatic compensation mechanism. Geophysical Journal International 147, 630–638.Google Scholar
  66. Sharma, S.R., Rao, V.K., Mall, D.M., Gowd, T.N., 2005. Geothermal structure in a seismoactive region of Central India. Pure and Applied Geophysics 162, 129–144.Google Scholar
  67. Stüwe, K., 2007. Geodynamics of the Lithosphere: An Introduction. 2nd edition. Springer Verlag, 493 p.Google Scholar
  68. Şengör, A.M.C., Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181–241.Google Scholar
  69. Şengör, A.M.C., Özeren, S., Zor, E., Genç, T., 2003. East Anatolian high plateau as a mantle-supported, north-south shortened domal structure. Geophys. Res. Lett. 30, 24. 8045.Google Scholar
  70. Tanaka, A., Okubo, Y., Matsubayashi, O., 1999. Curie-point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics 306, 461–470.Google Scholar
  71. Tezcan, A.K., 1979. Geothermal studies, their present status and contribution to heat flow contouring in Turkey, in Terrestrial Heat Flow in Europe, pp. 283–291, eds Cermak, V. & Rybach, L., Springer Verlag, Berlin.Google Scholar
  72. Tezcan, A.K., 1995. Geothermal explorations and heat flow in Turkey, in: Terrestrial Heat Flow and Geothermal Energy in Asia. Edited by: Gupta, M. L. and Yamano, M., Science Publishers, Lebanon, New Hampshire, 23–42.Google Scholar
  73. Tezcan, A.K., Turgay, M.I., 1989. Heat flow map of Turkey, General Directorate of Mineral Research and Exploration (MTA), Department of Geophysics Research, Ankara (in Turkish, unpublished).Google Scholar
  74. Tokel, S., 1981. Plaka tektoniğinde magmatik yerleşimler ve jeokimya: Türkiye’den örnekler. Yeryuvarı ve İnsan 6/3–4, 53–65.Google Scholar
  75. Topuz, G., Altherr, R., Siebel, W., Schwarz, W.H., Zack, T., Hasözbek, A., Barth, M., Satir, M. and Sen, C., 2010. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: the Gümüshane pluton (NE Turkey). Lithos 116, 92–110.Google Scholar
  76. Turcotte, D.L. and Schubert, G., 1982. Geodynamics Applications of Continuum Physics to Geologic Problems. Wiley, New York, 450 pp.Google Scholar
  77. Ustaömer, T., Robertson, A.H.F., 1995. Palaeotethyan tectonic evolution of the north Tethyan margin in the Central Pontides, N Turkey. In: A. Erler, T. Ercan (eds) Proceedings of the International Symposium on the Geology of the Black Sea Region, Ankara, 23–42.Google Scholar
  78. Van der Voo, R., 1968. Jurassic, Cretaceous and Eocene pole positions from northeastern Turkey. Tectonophysics 6, 251–269.Google Scholar
  79. Yamano, M., 1995. Recent heat flow studies in and around Japan. In: Gupta, M.L., Yamano, M. (Eds.), Terrestrial Heat Flow and Geothermal Energy in Asia. A.A. Balkema, Rotterdam, pp. 173–201.Google Scholar
  80. Zor, E., Sandvol, E., Gürbüz, C., Türkelli, N., Seber, D., Barazangi, M. 2003. The crustal structure of the East Anatolian plateau (Turkey) from receiver functions. Geophys. Res. Lett. 30 (24), 8044, doi: 10.1029/2003GL018192.

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of GeophysicsGümüşhane UniversityGümüşhaneTurkey

Personalised recommendations