Pure and Applied Geophysics

, Volume 168, Issue 12, pp 2221–2237 | Cite as

A Unifying Phase Diagram for the Dynamics of Sheared Solids and Granular Materials

  • Yehuda Ben-Zion
  • Karin A. Dahmen
  • Jonathan T. Uhl
Article

Abstract

We present a simple unifying model that can be used to analyze, within a single framework, different dynamic regimes of shear deformation of brittle, plastic, and granular materials. The basic dynamic regimes seen in the response of both solids and granular materials to slowly increasing loading are scale-invariant behavior with power law statistics, quasi-periodicity of system size events, and persisting long term mode switching between the former two types of response. The model provides universal analytical mean field results on the statistics of failure events in the different regimes and distributed versus localized spatial responses. The results are summarized in a phase diagram spanned by three tuning parameters: dynamic strength change (weakening, neutral or strengthening) during slip events, dissipation of stress transfer (related to the void fraction in granular materials and damaged solids), and the ratio of shear rate over healing rate controlling the regaining of cohesion following failures in brittle solids. The mean field scaling predictions agree with experimental, numerical, and observational data on deformation avalanches of solids, granular materials, and earthquake faults. The model provides additional predictions that should be tested with future observation and simulation data.

Keywords

irreversible deformation damaged rocks solid mechanics granular mechanics phase transitions brittle deformation plastic deformation 

Notes

Acknowledgments

YBZ acknowledges support from the National Science Foundation (grant EAR-0908903) and the US-Israel Binational Science Foundation (grant number 2008248). KD acknowledges support from NSF DMR 03-25939 (MCC) and thanks the USC Dept. of Earth Sciences and the Kavli Institute of Theoretical Physics at UC Santa Barbara for kind hospitality and support. The manuscript benefited from useful comments by Jay Finberg, Bob Behringer, and Charlie Sammis.

References

  1. Aharonov, E., and D. Sparks (1999), Rigidity phase transition in granular packings, Phys. Rev E, 60, 6890-6896.Google Scholar
  2. Aharonov, E., and D. Sparks (2002), “Shear profiles and localization in simulations of granular materials”, Phys. Rev. E 65, 051302/1-12.Google Scholar
  3. Aharonov, E., and D. Sparks (2004), Stick-slip motion in simulated granular layers, J. Geophys. Res, 109, B09306.Google Scholar
  4. Alava, M. J., P. K. V. V. Nukala, and S. Zapperi (2006), Statistical models of fracture, Advances in Physics, 55, 349–476.Google Scholar
  5. Amit, R., E. Zilberman, N. Porat, and Y. Enzel (2002), Paleoseismic evidence for time-dependency of seismic response on a fault system - the southern Arava Valley, Red Sea Rift, Israel, Geol. Soc. Am. Bull., 114, 192–206.Google Scholar
  6. Ashby, M. F., and C. G. Sammis (1990), The damage mechanics of brittle solids in compression, Pure Appl. Geophys., 133 (3), 489–521.Google Scholar
  7. Baldassari A., et al. (2006), Brownian forces in sheared granular matter, Phys. Rev. Lett. 96, 118002.Google Scholar
  8. Baud, P., E. Klein, and T.-F. Wong (2004), Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity J. Struct. Geol., 26, 603-624.Google Scholar
  9. Ben-David, O., S. M. Rubinstein and J. Fineberg (2010), Slip-stick and the evolution of frictional strength, Nature, 463, 76-79.Google Scholar
  10. Ben-Zion, Y., and J. R. Rice (1993), Earthquake failure sequences along a cellular fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions, J. Geophys. Res., 98, 14109-14131.Google Scholar
  11. Ben-Zion, Y. (1996), Stress, slip and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations, J. Geophys. Res., 101, 5677-5706.Google Scholar
  12. Ben-Zion, Y., K. Dahmen, V. Lyakhovsky, D. Ertas, and A. Agnon (1999), Self-Driven Mode Switching of Earthquake Activity on a Fault System, Earth Planet. Sci. Lett., 172/1-2, 11-21.Google Scholar
  13. Ben-Zion, Y., M. Eneva, and Y. Liu (2003), Large Earthquake Cycles and Intermittent Criticality On Heterogeneous Faults Due To Evolving Stress and Seismicity, J. Geophys. Res., 108, No. B6, 2307. doi:10.1029/2002JB002121.
  14. Ben-Zion, Y., and V. Lyakhovsky (2006), Analysis of Aftershocks in a Lithospheric Model with Seismogenic Zone Governed by Damage Rheology, Geophys. J. Int., 165, 197-210. doi:10.1111/j.1365-246X.2006.02878.x.
  15. Ben-Zion, Y. (2008), Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes and different dynamic regimes, Rev. Geophys. 46, RG4006. doi:10.1029/2008RG000260.
  16. Bruhn, R. L., W. T. Parry, W. A. Yonkee, and T. Thompson (1994), Fracturing and hydrothermal alteration in normal fault zones, Pure Appl. Geophys., 142, 609–645.Google Scholar
  17. Bulatov, V. V., and A. S. Argon (1994), A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization, Model. Simul. Mater. Sci. Eng. 2, 167.Google Scholar
  18. Chen, K., P. Bak, and S. P. Obukhov (1991),Self Organized Criticality in a crack-propagation model of earthquakes”, Phys. Rev. A 43, 625-630.Google Scholar
  19. Chester, F. M., J. P. Evans, and R. L. Biegel (1993), Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res., 98, 771–786.Google Scholar
  20. Chinnery, M. (1963), The stress changes that accompany strike-slip faulting, Bull. Seismol. Soc. Amer., 53, 921-932.Google Scholar
  21. Csikor, F. F., C. Motz, D. Weygand, M. Zaiser, and S. Zapperi (2007), `Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale’, Science 318, 251-254.Google Scholar
  22. Dahmen, K., D. Ertas, and Y. Ben-Zion (1998), Gutenberg Richter and Characteristic Earthquake behavior in Simple Mean-Field Models of Heterogeneous Faults, Phys. Rev. E, 58, 1494-1501.Google Scholar
  23. Dahmen, K., and Y. Ben-Zion (2009), The physics of jerky motion in slowly driven magnetic and earthquake fault systems, Encyclopedia of Complexity and System Science, R. Meyers (Eds.), Vol. 5, 5021-5037, Springer.Google Scholar
  24. Dahmen, K. A., Y. Ben-Zion, and J. T. Uhl (2009), A micromechanical model for deformation in disordered solids with universal predictions for stress-strain curves and related avalanches, Phys. Rev. Lett., 102, 175501. doi:10.1103/PhysRevLett.102.175501.
  25. Dahmen, K. A., Y. Ben-Zion, and J. T. Uhl (2011), A simple analytic theory for the statistics of avalanches in sheared granular materials, Nature Physics, 7, 554–557. doi:10.1038/NPHYS1957.
  26. Daniels, K. E., and N. W. Hayman (2008), “Force chains in seismogenic faults visualized with photoelastic granular shear experiments” Journal of Geophysical Research, 113 B11411 and references therein.Google Scholar
  27. Dieterich, J. H., and B. D. Kilgore (1996), Imaging surface contacts; power law contact distributions and contact stresses in quarts, calcite, glass, and acrylic plastic. Tectonophysics, 256, 219-239.Google Scholar
  28. Dimiduk, D. M., C. Woodward, R. LeSar, and M. D. Uchic (2006), “Scale-Free Intermittent Flow in Crystal Plastity’’, Science 312, 1188-1190.Google Scholar
  29. Falk, M. L., and J. S. Langer (1998), Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E, 57(6), 7192–7205.Google Scholar
  30. Fisher, D. S., K. Dahmen, S. Ramanathan, and Y. Ben-Zion (1997), Statistics of Earthquakes in Simple Models of Heterogeneous Faults, Phys. Rev. Lett., 78, 4885-4888.Google Scholar
  31. Fisher, D. S. (1998), Collective transport in random media: from superconductors to earthquakes, Phys. Reports, 301, 113-150.Google Scholar
  32. Hartley, R. R. (2004), Evolving force networks in deforming granular materials, PhD thesis, Duke University.Google Scholar
  33. Hayman, N.W., L. Ducloue, K.L. Foco, K.E. Daniels (2011), Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault, Pure and Applied Physics, in press.Google Scholar
  34. Hickman, S. H., and B. Evans (1992), Growth of grain contacts in halite by solution transfer; Implications for diagenesis, lithification, and strength recovery, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T.-F. Wong, pp. 253–280, Academic, San Diego, Calif.Google Scholar
  35. Jaeger, M., S. R. Nagel, and R. P. Behringer (1996), Granular solids, liquids, and gases, Rev. Mod. Phys., 68, 1259-1273.Google Scholar
  36. Johnson, P. A., and X. Jia (2005), Nonlinear dynamics, granular media and dynamic earthquake triggering, Nature, 473, 871-874.Google Scholar
  37. Kachanov, L. M. (1986), Introduction to continuum damage mechanics, pp. 135, Martinus Nijhoff Publishers.Google Scholar
  38. Kuntz, M. and J.P.Sethna (2000), Noise in disordered systems: the power spectrum and dynamic exponents in avalanche models, Phys. Rev. B 62, 11699-11708.Google Scholar
  39. Laurson, L., and M. J. Alava (2006), 1/f noise and avalanche scaling in plastic deformation, Phys. Rev. E 74, 066106.Google Scholar
  40. Liu, A. J., and S. R. Nagel (eds) (2001), Jamming and Rheology, Taylor and Francis, New York.Google Scholar
  41. Lyakhovsky, V., Y. Ben-Zion, and A. Agnon (2001), Earthquake Cycle, Fault Zones, and Seismicity Patterns in a Rheologically Layered Lithosphere, J. Geophys. Res., 106, 4103-4120.Google Scholar
  42. Lyakhovsky, V. and Y. Ben-Zion (2008), Scaling relations of earthquakes and aseismic deformation in a damage rheology model, Geophys. J. Int., 172, 651-662. doi:10.1111/j.1365-246X.2007.03652.x.
  43. Lyakhovsky, V. and Y. Ben-Zion (2009), Evolving geometrical and material properties of fault zones in a damage rheology model, Geochem. Geophys. Geosyst., 10, Q11011. doi:10.1029/2009GC002543.
  44. Maloney, C. E. and M. O. Robbins (2009), Anisotropic Power Law Strain Correlations in Sheared Amorphous 2D Solids, Phys. Rev. Lett. 102, 225502.Google Scholar
  45. Marco, S., M. Stein, A. Agnon, and H. Ron (1996), Long term earthquake clustering: a 50,000 year paleoseismic record in the Dead sea graben, J. Geophys. Res., 101, 6179-6192.Google Scholar
  46. Marone, C. (1998), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643-649.Google Scholar
  47. Mehta, A. P., K. A. Dahmen, and Y. Ben-Zion (2006), Universal mean moment rate profiles of earthquake ruptures, Phys. Rev. E., 73, 056104.Google Scholar
  48. Papanikolaou, S., F. Bohn, R. L. Sommer, G. Durin, S. Zapperi, and J. P. Sethna (2009), Beyond scaling: the average avalanche shape, arXiv:0911.2291.Google Scholar
  49. Peng, Z., and Y. Ben-Zion (2006), Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the north Anatolian fault and strong ground motion, Pure Appl. Geophys., 163, 567-600. doi:10.1007/s00024-005-0034-6.
  50. Petri, A., A. Baldassarri, F. Dalton, G. Pontuale, L. Pietronero, S. Zapperi, (2008) Stochastic dynamics of a sheared granular medium, EPJ B 64, 531.Google Scholar
  51. Rechenmacher, A., Abedi, S. and Chupin, O. (2010), Evolution of Force Chains in Shear Bands in Sand, Geotechnique, 60, 343-351.Google Scholar
  52. Richeton, T., J. Weiss, and F. Louchet (2005), Breakdown of avalanche critical behavior in polycrystalline plasticity, Nature Materials 4, 465-469.Google Scholar
  53. Sethna, J.P., K. A. Dahmen, and C. R. Myers (2001), “Crackling Noise”, Nature, 410, 242-250.Google Scholar
  54. Spaepen, F. (1977), A microscopic mechanism for steady state inhomogeneous flow in metallic glasses,Acta Metallurgica 25, 407-415.Google Scholar
  55. Tsekenis, G. and K. A. Dahmen (2010) Depinning without a Jamming Point in Dislocation Systems, Phys. Rev. Lett., submitted.Google Scholar
  56. Turcotte, D. L. (1997), Fractals and Chaos in Geology and Geophysics, Cambridge University Press.Google Scholar
  57. Utsu, T., Y. Ogata, and R. S. Matsu’ura (1995), The centenary of the Omori Formula for a decay law of aftershock activity, J. Phys. Earth, 43, 1-33.Google Scholar
  58. Weertman, J. (1996), Dislocation Based Fracture Mechanics, World Scientific.Google Scholar
  59. Wong, T.-F., P. Baud and E. Klein (2001), Localized failure modes in a compactant porous rock. Geophys. Res. Lett. 28, 2521-2524.Google Scholar
  60. Wu, C., Z. Peng, and Y. Ben-Zion (2009), Non-linearity and temporal changes of fault zone site response associated with strong ground motion, Geophys. J. Int., 176, 265–278. doi:10.1111/j.1365-246X.2008.04005.x.
  61. Yu, P., T. Shannon, B. Utter, R.P. Behringer (2009), Stick-Slip in a 2D Granular Medium”, submitted.Google Scholar
  62. Zaiser, M. (2006), Scale invariance in plastic flow of crystalline solids, Advances in Physics 55, 185-245.Google Scholar
  63. Miguel M.C. and Zapperi, S. (2006), Fluctuations in plasticity at the microscale, Science 312, 1151-1152 and references therein.Google Scholar
  64. Zhang, J., T.S. Majumdar, A. Tordesillas, and R.P. Behringer (2010), Statistical Properties of a 2D Granular Material Subjected to Cyclic Shear, Granular Matter, 12, 159–172.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Yehuda Ben-Zion
    • 1
  • Karin A. Dahmen
    • 2
  • Jonathan T. Uhl
    • 3
  1. 1.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of PhysicsUniversity of Illinois at Urbana ChampaignUrbanaUSA
  3. 3.Los AngelesUSA

Personalised recommendations