Pure and Applied Geophysics

, Volume 168, Issue 12, pp 2365–2393 | Cite as

Principal Slip Zones in Limestone: Microstructural Characterization and Implications for the Seismic Cycle (Tre Monti Fault, Central Apennines, Italy)

  • Steven A. F. Smith
  • Andrea Billi
  • Giulio Di Toro
  • Richard Spiess


Earthquakes in central Italy, and in other areas worldwide, often nucleate within and rupture through carbonates in the upper crust. During individual earthquake ruptures, most fault displacement is thought to be accommodated by thin principal slip zones. This study presents detailed microstructural observations of the slip zones of the seismically active Tre Monti normal fault zone. All of the slip zones cut limestone, and geological constraints indicate exhumation from <2 km depth, where ambient temperatures are ≪100°C. Scanning electron microscope observations suggest that the slip zones are composed of 100% calcite. The slip zones of secondary faults in the damage zone contain protocataclastic and cataclastic fabrics that are cross-cut by systematic fracture networks and stylolite dissolution surfaces. The slip zone of the principal fault has much more microstructural complexity, and contains a 2–10 mm thick ultracataclasite that lies immediately beneath the principal slip surface. The ultracataclasite itself is internally zoned; 200–300 μm-thick ultracataclastic sub-layers record extreme localization of slip. Syn-tectonic calcite vein networks spatially associated with the sub-layers suggest fluid involvement in faulting. The ultracataclastic sub-layers preserve compelling microstructural evidence of fluidization, and also contain peculiar rounded grains consisting of a central (often angular) clast wrapped by a laminated outer cortex of ultra-fine-grained calcite. These “clast-cortex grains” closely resemble those produced during layer fluidization in other settings, including the basal detachments of catastrophic landslides and saturated high-velocity friction experiments on clay-bearing gouges. An overprinting foliation is present in the slip zone of the principal fault, and electron backscatter diffraction analyses indicate the presence of a weak calcite crystallographic preferred orientation (CPO) in the fine-grained matrix. The calcite c-axes are systematically inclined in the direction of shear. We suggest that fluidization of ultracataclastic sub-layers and formation of clast-cortex grains within the principal slip zone occurred at high strain rates during propagation of seismic ruptures whereas development of an overprinting CPO occurred by intergranular pressure solution during post-seismic creep. Further work is required to document the range of microstructures in localized slip zones that cross-cut different lithologies, and to compare natural slip zone microstructures with those produced in controlled deformation experiments.


Slip zones limestone localization clast-cortex grains earthquakes 



We thank Leonardo Tauro, Elena Masiero, and Domenico Mannetta for preparation of thin sections. Andrea Cavallo and Piergiorgio Scarlato continue to provide invaluable laboratory support. Reviews by Gary Axen and Ze’ev Reches, and comments by Yehuda Ben-Zion, Andre Niemeijer, and Silvia Mittempergher, helped us greatly to improve the manuscript. This work is supported by European Research Council Starting Grant “USEMS” (no. 205175).


  1. Agosta, F. and Kirschner, D.L., 2003. Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy. Journal of Geophysical Research-Solid Earth, 108, NO. B4, 2221, doi: 10.1029/2002JB002013.
  2. Agosta, F. & Aydin, A. 2006. Architecture and deformation mechanism of a basin-bounding normal fault in Mesozoic platform carbonates, central Italy. Journal of Structural Geology, 28, 1445-1467.Google Scholar
  3. Amato, A. et al., 1998. The 1997 Umbria-Marche, Italy, earthquake sequence: a first look at the main shocks and aftershocks. Geophysical Research Letters, 25(15): 2861-2864.Google Scholar
  4. Amoruso, A. and Crescentini, L., 2009. Slow diffusive slip propagation following the 6 April 2009 L’Aquila earthquake, Italy. Geophysical Research Letters, 36: L24306, doi: 10.1029/2009GL041503.
  5. Anders, M.H., Fouke, B.W., Zerkle, A.L., Tavarnelli, E., Alvarez, W. and Harlow, G.E., 2010. The role of calcining and basal fluidization in the long runout of carbonate slides: An example from the Heart Mountain slide block, Wyoming and Montana, U.S.A. Journal of Geology, 118, 577-599 Google Scholar
  6. Axen, G. J. (1984) Thrusts in the eastern Spring Mountains: Geometry and mechanical implications. Geological Society of America Bulletin, v. 95, 1202-1207.Google Scholar
  7. Bakun, W.H. et al., 2005. Implications for prediction and hazard assessment from the 2004 Parkfield Earthquake - Parkfield. Nature, 437: 969-974.Google Scholar
  8. Bally, A.W., Burbi, L., Cooper, C. and Ghelardoni, R., 1987. Balanced sections and seismic reflection profiles across the central Apennines. Mem. Soc. Geol. It., 35: 257-310.Google Scholar
  9. Barnhoorn, A., Bystricky, M., Burlini, L. and Kunze, K., 2004. The role of recrystallisation on the deformation behaviour of calcite rocks: large strain torsion experiments on Carrara marble. Journal of Structural Geology, 26(5): 885-903.Google Scholar
  10. Bastesen, E., Braathen, A., Nottveit, H., Gabrielsen, R.H. and Skar, T., 2009. Extensional fault cores in micritic carbonate - Case studies from the Gulf of Corinth, Greece. Journal of Structural Geology, 31: 403-420.Google Scholar
  11. Beeler, N.M., Tullis, T.E., Blanpied, M.L. and Weeks, J.D., 1996. Frictional behavior of large displacement experimental faults. Journal of Geophysical Research, 101: 8697-8715.Google Scholar
  12. Ben-Zion, Y. 2003. Key Formulas in Earthquake Seismology, in International Handbook of Earthquake and Engineering Seismology, eds. W. HK Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, Part B, 1857-1875, Academic Press, 2003.Google Scholar
  13. Ben-Zion, Y. & Sammis, C.G. (2003) Characterization of Fault Zones, Pure and Applied Geophysics, 160, 677-715.Google Scholar
  14. Ben-Zion, Y. and Z. Shi. 2005., Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth Planet. Sci. Lett., 236, 486-496, DOI:  10.1016/j.epsl.2005.03.025.
  15. Bestmann, M., Kunze, K. and Matthews, A., 2000. Evolution of a calcite marble shear zone complex on Thassos Island, Greece: microstructural and textural fabrics and their kinematic significance. Journal of Structural Geology, 22: 1789-1807.Google Scholar
  16. Beutner, E.C. and Gerbi, G.P., 2005. Catastrophic emplacement of the Heart Mountain block slide, Wyoming and Montana, USA. Geological Society of America Bulletin, 117(5/6): 724-735.Google Scholar
  17. Billi, A., 2003. Solution slip and separations on strike-slip fault zones: theory and application to the Mattinata Fault, Italy. Journal of Structural Geology, 25, 703-715.Google Scholar
  18. Billi, A. and Salvini, F., 2001. Fault-related solution cleavage in exposed carbonate reservoir rocks in the Southern Apennines, Italy. Journal of Petroleum Geology, 24(2): 147-169.Google Scholar
  19. Billi, A., Salvini, F. and Storti, F., 2003. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology, 25(11): 1779-1794.Google Scholar
  20. Boncio, P., et al. (2010). Coseismic ground deformation of the 6 April 2009 L’Aquila earthquake (central Italy, M w 6.3). Geophysical Research Letters, 37: L06308, doi: 10.1029/2010GL042807.
  21. Bons, P.D. & den Brok, B. (2000) Crystallographic preferred orientation development by dissolution-precipitation creep, Journal of Structural Geology, 22, 1713-1722.Google Scholar
  22. Boullier, A.M., Yeh, E.-C., Boutareaud, S., Song, S.-R. and Tsai, C.-H., 2009. Microscale anatomy of the 1999 Chi-Chi earthquake fault zone. Geochemistry Geophysics Geosystems, 10(3): Q03016, doi: 10.1029/2008GC002252.
  23. Boutareaud, S. et al. 2010. Clay clast aggregates in gouges: New textural evidence for seismic faulting. Journal of Geophysical Research, 115: B02408, doi: 10.1029/2008JB006254.
  24. Boutareaud, S. et al., 2008. Clay-clast aggregates: A new textural evidence for seismic fault sliding? Geophysical Research Letters, 35, L05302, doi:  10.1029/2007GL032554.
  25. Brantut, N., Schubnel, A., Corvisier, J. and Sarout, J. 2010. Thermochemical pressurization of faults during coseismic slip. Journal of Geophysical Research, 115: B05314, doi: 10.1029/2009JB006533.
  26. Brantut, N., Schubnel, A., Rouzaud, J.-N., Brunet, F. and Shimamoto, T., 2008. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research, 113: B10401, doi : 10.1029/2007JB005551.
  27. Brodsky, E.E., Rowe, C.D., Meneghini, F. and Moore, D., 2009. A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake. Journal of Geophysical Research, 114: B01303, doi: 10.1029/2008JB005633.
  28. Brock, W.G. & Engelder, T. (1977) Deformation associated with the movement of the Muddy Mountain overthrust in the Buffington window, southeastern Nevada. Geological Society of America Bulletin, v. 88, 1667-1677.Google Scholar
  29. Brown, R.J., Branney, M.J., Maher, C. and Davila-Harris, P. 2010. Origin of accretionary lapilli within ground-hugging density currents: Evidence from pyroclastic couplets on Tenerife. Geological Society of America Bulletin, 122(1/2): 305-320.Google Scholar
  30. Bussolotto, M. et al., 2007. Deformation features within an active normal fault zone in carbonate rocks: The Gubbio fault (Central Apennines, Italy). Journal of Structural Geology, 29(12): 2017-2037.Google Scholar
  31. Caine, J.S., Evans, J.P. and Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology, 24(11):1025-1028.Google Scholar
  32. Carcaillet, J., Manighetti, I., Chauvel, C., Schlagenhauf, A. and Nicole, J.-M., 2008. Identifying past earthquakes on an active normal fault (Magnola, Italy) from the chemical analysis of its exhumed carbonate fault plane. Earth and Planetary Science Letters, 271: 145-158.Google Scholar
  33. Cavinato, G.P., Carusi, C., Dall’Asta, M., Miccadei, E. and Piacentini, T., 2002. Sedimentary and tectonic evolution of Plio–Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy). Sedimentary Geology, 148: 29-59.Google Scholar
  34. Cavinato, G.P. and De Celles, P.G., 1999. Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: Response to corner flow above a subducting slab in retrograde motion. Geology, 27(10): 955-958.Google Scholar
  35. Chester, F.M. and Chester, J.S., 1998. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics, 295(1-2): 199-221.Google Scholar
  36. Chester, F.M., Chester, J.S., Kirschner, D.L., Schulz, S.E. and Evans, J.P., 2004. Structure of large-displacement, strike-slip fault zones in the brittle continental crust. In: G.D. Karner, B. Taylor, N.W. Driscoll and D.L. Kohlstedt (Editors), Rheology and deformation in the lithosphere at Continental Margins. Columbia University Press, New York.Google Scholar
  37. Chester, F.M., Evans, J.P. and Biegel, R.L., 1993. Internal Structure and Weakening Mechanisms of the San-Andreas Fault. Journal of Geophysical Research-Solid Earth, 98(B1): 771-786.Google Scholar
  38. Chester, J.S., Chester, F. and Kronenberg, A.K., 2005. Fracture surface energy of the Punchbowl fault, San Andreas system, California. Nature, 437: 133-136.Google Scholar
  39. Chiarabba, C. et al., 2009. The 2009 L’Aquila (central Italy) M W 6.3 earthquake: Main shock and aftershocks. Geophysical Research Letters, 36: L18308, doi: 10.1029/2009GL039627.
  40. Chiarabba, C., Bagh, S., Bianchi, I., De Gori, P. and Barchi, M.R. 2010. Deep structural heterogeneities and the tectonic evolution of the Abruzzi region (Central Apennines, Italy) revealed by microseismicity, seismic tomography, and teleseismic receiver functions. Earth and Planetary Science Letters: doi: 10.1016/j.epsl.2010.04.028.
  41. Chiarabba, C. et al., 2005. Mainshocks and aftershocks of the 2002 molise seismic sequence, southern Italy. Journal of Seismology, 9(4): 487-494.Google Scholar
  42. Chiaraluce, L., Ellsworth, W.L., Chiarabba, C. and Cocco, M., 2003. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study. Journal of Geophysical Research-Solid Earth, 108(B6).Google Scholar
  43. Cirella, A. et al., 2009. Rupture history of the 2009 L’Aquila (Italy) earthquake from non-linear joint inversion of strong motion and GPS data. Geophysical Research Letters, 36: L19304, doi: 10.1029/2009GL039795.
  44. Cochran, E.S., Li, Y-G., Shearer, P.M., Barbot, S., Fialko, Y. & Vidale, J.E. 2009. Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology, 37(4): 315-318.Google Scholar
  45. Collettini, C., Chiaraluce, L., Pucci, S., Barchi, M.R. and Cocco, M., 2005. Looking at fault reactivation matching structural geology and seismological data. Journal of Structural Geology, 27(5): 937-942.Google Scholar
  46. Cowan, D.S., 1999. Do faults preserve a record of seismic slip? A field geologist’s opinion. Journal of Structural Geology, 21(8-9): 995-1001.Google Scholar
  47. De Paola, N., Collettini, C., Faulkner, D.R. and Trippetta, F., 2008. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics, 27: TC4017.Google Scholar
  48. Dor, O., Ben-Zion, Y., Rockwell, T., Brune. J. (2006) Pulverized rocks in the Mojave section of the San Andreas Fault Zone, Earth and Planetary Science Letters, 245, 642-654.Google Scholar
  49. Di Toro, G., Goldsby, D.L. and Tullis, T.E., 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427(6973): 436-439.Google Scholar
  50. Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G. and Shimamoto, T., 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science, 311(5761): 647-649.Google Scholar
  51. Di Toro, G., Nielsen, S. and Pennacchioni, G., 2005a. Earthquake rupture dynamics frozen in exhumed ancient faults. Nature, 436(7053): 1009-1012.Google Scholar
  52. Di Toro, G., Pennacchioni, G. and Teza, G. 2005b. Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. Tectonophysics, 402(1-4): 3-20.Google Scholar
  53. Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, D., Scarlato, P., Spada, G., Alessandroni, R., Romeo, G., Di Stefano, G., Smith, S., Spagnuolo, E. & Mariano, S. 2010. From field geology to earthquake simulation: a new state-of-the-art tool to investigate rock friction during the seismic cycle (SHIVA). Rend. Fis. Acc. Lincei, DOI  10.1007/s12210-010-0097-x.
  54. Emergeo, W.G. 2010. Evidence for surface rupture associated with the M W 6.3 L’Aquila earthquake sequence of April 2009 (central Italy). Terra Nova, 22: 43-51.Google Scholar
  55. Famin, V., Nakashima S., Boullier, A.-M., Fujimoto, K. and Hirono, T., 2008. Earthquakes produce carbon dioxide in crustal faults. Earth and Planetary Science Letters, 265: 487-497.Google Scholar
  56. Ferri, F., Di Toro, G., Hirose, T. and Shimamoto, T. 2010. Evidences of thermal pressurization in high velocity friction experiments on smectite-rich gouges. Terra Nova: doi:  10.1111/j.1365-3121.2010.00955.x.
  57. Folk, R.L. & Assereto, R. (1978) Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene Speleothem, Carlsbad Caverns, New Mexico. Journal of Sedimentary Research, 46.Google Scholar
  58. Galadini, F., Galli, P. and Giraudi, C., 1997. Geological investigations of Italian earthquakes: New paleoseismological data from the Fucino Plain (Central Italy). Journal of Geodynamics, 24(1-4): 87-103.Google Scholar
  59. Galli, P., Galadini, F. and Pantosti, D., 2008. Twenty years of paleoseismology in Italy. Earth-Science Reviews, 88(1-2): 89-117.Google Scholar
  60. Ghisetti, F., Kirschner, D.L., Vezzani, L. and Agosta, F., 2001. Stable isotope evidence for contrasting paleofluid circulation in thrust faults and normal faults of the central Apennines, Italy. Journal of Geophysical Research-Solid Earth, 106(B5): 8811-8825.Google Scholar
  61. Ghisetti, F. and Vezzani, L., 1999. Depth and modes of Pliocene–Pleistocene crustal extension of the Apennines (Italy). Terra Nova, 11(2-3): 67-72.Google Scholar
  62. Ghisetti, F. and Vezzani, L., 2002. Normal faulting, transcrustal permeability and seismogenesis in the Apennines (Italy). Tectonophysics, 348(1-3): 155-168.Google Scholar
  63. Giaccio, B., Galadini, F., Sposato, A., Messina, P., Moro, M., Zreda, M., Cittadini, A., Salvi, S. & Todero, A. (2002) Image processing and roughness analysis of exposed bedrock fault planes as a tool for paleoseismological analysis: results from the Campo Felice fault (central Apennines, Italy). Geomorphology, 49, 281-301.Google Scholar
  64. Gilbert, J.S. and Lane, S.J., 1994. The origin of accretionary lapilli. Bulletin of Volcanology, 56: 398-411.Google Scholar
  65. Giraudi, C., 1988. Evoluzione geologica della piana del Fucino (Abruzzo) negli ultimi 30000 anni. Quaternario, 1: 131-159.Google Scholar
  66. Goren, L., Aharonov, E. and Anders, M.H. 2010. The long runout of the Heart Mountain landslide: A chemo-thermo-poro-elastic mechanism. Journal of Geophysical Research: doi: 10.1029/2009JB007113.
  67. Gratier, J-P., Favreau, P. & Renard, F. (2003) Modeling fluid transfer along Californian faults when integrating pressure solution crack sealing and compaction processes, Journal of Geophysical Research, 108, B2, 2104, doi: 10.1029/2001JB000380.
  68. Gratier, J-P. & Gueydan, F. (2007) Deformation in the presence of fluids and mineral reactions: effect of fracturing and fluid-rocks interaction on seismic cycle, in: Tectonic Faults, agents of change on a dynamic earth, edited by M.R. Handy, G. Hirth, N. Hovius, Dahlem Workshop, The MIT Press, Cambridge, Mass., USA. pp. 319-356.Google Scholar
  69. Griffith, A., Nielsen, S., Di Toro, G. and Smith, S.A.F. 2010. Rough Faults, Distributed Weakening, and Off-Fault Deformation. Journal of Geophysical Research, 115: doi: 10.1029/2009JB006925.
  70. Han, R., Hirose, T. and Shimamoto, T. 2010. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. Journal of Geophysical Research, 115: B03412, doi: 10.1029/2008JB006136.
  71. Han, R., Shimamoto, T., Hirose, T., Ree, J.H. and Ando, J., 2007a. Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316(5826): 878-881.Google Scholar
  72. Han, R.H., Shimamoto, T., Ando, J.I. and Ree, J.H., 2007b. Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge. Geology, 35(12): 1131-1134.Google Scholar
  73. Hunstad, I., et al. (2003) Geodetic strain in peninsular Italy between 1875 and 2001. Geophysical Research Letters, 30(4): 1181, doi: 10.1029/2002GL016447.
  74. Jackson, J., 1994. Active Tectonics of the Aegean Region. Annual Review of Earth and Planetary Sciences (22): 239-271.Google Scholar
  75. Kanamori, H. and Heaton, T.H., 2000. Microscopic and Macroscopic Physics of Earthquakes. In: J. Rundle, D.L. Turcotte and W. Klein (Editors), GeoComplexity and the Physics of Earthquakes. AGU, Washington, pp. 147-163.Google Scholar
  76. Kostrov, B. & Das, S. (1988) Principles of earthquake source mechanics. Cambridge University Press, London.Google Scholar
  77. Lachenbruch, A.H., 1980. Frictional Heating, Fluid Pressure, and the Resistance to Fault Motion. Journal of Geophysical Research, 85(Nb11): 6097-6112.Google Scholar
  78. Li, Y.G., Aki, K.E., Vidale, J.E. and Alvarez, M.G., 1998. A delineation of the Nojima fault ruptured in the M7.2 Kobe earthquake of 1995 using fault zone trapped waves. Journal of Geophysical Research, 103: 7247-7263.Google Scholar
  79. Logan, J.M., Friedman, M., Higgs, N., Dengo, C. and Shimamoto, T., 1979. Experimental studies of simulated gouge and their application to studies of natural fault zones, U.S. Geological Survey Open-File Report.Google Scholar
  80. Mather, A., Stokes, M., Pirrie, D. & Hartley, R. (2008) Generation, transport and preservation of armoured mudballs in an ephemeral gully system. Geomorphology, 100, 104-119.Google Scholar
  81. Meneghini, F., et al. 2010. Record of mega-earthquakes in subduction thrusts: the black fault rocks of Pasagshak Point (Kodiak Island, Alaska). Bulletin of the Geological Society of America, 122: 1280-1297.Google Scholar
  82. Micarelli, L., Benedicto, A. and Wibberley, C.A.J., 2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28(7): 1214-1227.Google Scholar
  83. Molli, G. et al., 2009. Fault zone structure and fluid-rock interaction of a high-angle normal fault in Carrara marble (NW Tuscany, Italy). Journal of Structural Geology.Google Scholar
  84. Montone, P., Mariucci, M.T., Pondrelli, S. and Amato, A., 2004. An improved stress map for Italy and surrounding regions (central Mediterranean). Journal of Geophysical Research-Solid Earth, 109(B10): B10410, doi: 10.1029/2003JB002703.
  85. Morewood, N.C. and Roberts, G.P., 2000. The geometry, kinematics and rates of deformation within an en echelon normal fault segment boundary, central Italy. Journal of Structural Geology, 22(8): 1027-1047.Google Scholar
  86. Mostardini, M. and Merlini, S., 1986. Appennino centro-meridionale: Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. It.Google Scholar
  87. Oesterling, N., Heilbronner, R., Stunitz, H., Barnhoorn, A. and Molli, G., 2007. Strain dependent variation of microstructure and texture in naturally deformed Carrara marble. Journal of Structural Geology, 29(4): 681-696.Google Scholar
  88. Otsuki, K., Monzawa, N. and Nagase, T., 2003. Fluidization and melting of fault gouge during seismic slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms. Journal of Geophysical Research-Solid Earth, 108(B4): 2192, doi: 10.1029/2001JB001711.
  89. Palumbo, L., Benedetti, L., Bourles, D., Cinque, A. and Finkel, R., 2004. Slip history of the Magnola fault (Apennines, Central Italy) from 36Cl surface exposure dating: evidence for strong earthquakes over the Holocene. Earth and Planetary Science Letters, 225: 163-176.Google Scholar
  90. Pascucci, V., Merlini, S. and Martini, I.P., 1999. Seismic stratigraphy of the Miocene-Pleistocene sedimentary basins of the Northern Tyrrhenian Sea and western Tuscany (Italy). Basin Research, 11(4): 337-356.Google Scholar
  91. Patacca, E., Scandone, P., Di Luzio, E., Cavinato, G.P. and Parotto, M., 2008. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics, 27: TC3006, doi: 10.1029/2005TC001917.
  92. Piccardi, L., Gaudemer, Y., Tapponnier, P. and Boccaletti, M., 1999. Active oblique extension in the central Apennines (Italy): evidence from the Fucino region. Geophysical Journal International, 139(2): 499-530.Google Scholar
  93. Pittarello, L. et al., 2008. Energy partitioning during seismic slip in pseudotachylyte-bearing faults (Gole Larghe Fault, Adamello, Italy). Earth and Planetary Science Letters, 269(1-2): 131-139.Google Scholar
  94. Power, W. and Tullis, T., 1989. The Relationship Between Slickenside Surfaces in Fine-Grained Quartz and the Seismic Cycle. Journal of Structural Geology, 11(7): 879-893.Google Scholar
  95. Prior, D.J. et al., 1999. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84(11-12): 1741-1759.Google Scholar
  96. Reches, Z. & Dewers, T.A. (2005) Gouge formation by dynamic pulverization during earthquake rupture, Earth and Planetary Science Letters, 235, 361-374.Google Scholar
  97. Renard, F., Gratier, J-P. & Jamtveit, B. (2000) Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults, Journal of Structural Geology, 22, 1395-1407.Google Scholar
  98. Renard, F., Schmittbuhl, J., Gratier, J-P., Meakin, P. & Merino, E. (2004) Three-dimensional roughness of stylolites in limestones, Journal of Geophysical Research, v.109, B03209, doi: 10.1029/2003JB002555.
  99. Rice, J.R., 2006. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research-Solid Earth, 111(B5): B05311, doi: 10.1029/2005JB004006.
  100. Roberts, G.P., Cowie, P., Papanikolaou, I. and Michetti, A.M., 2004. Fault scaling relationships, deformation rates and seismic hazards: an example from the Lazio-Abruzzo Apennines, central Italy. Journal of Structural Geology, 26(2): 377-398.Google Scholar
  101. Roberts, G.P. and Michetti, A.M., 2004. Spatial and temporal variations in growth rates along active normal fault systems: an example from The Lazio-Abruzzo Apennines, central Italy. Journal of Structural Geology, 26(2): 339-376.Google Scholar
  102. Rockwell, T., Sisk, M., Girty, G., Dor, O., Wechsler, N., Ben-Zion, Y. (2009) Chemical and Physical Characteristics of Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults: Implications for Earthquake Physics. Pure and Applied Geophysics, 166, 1725–1746.Google Scholar
  103. Rowe, C.D., Moore, J.C., Meneghini, F. and McKeirnan, A.W., 2005. Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault. Geology, 33(12): 937-940.Google Scholar
  104. Rutter, E.H., 1976. Kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 283(1312): 203-219.Google Scholar
  105. Rutter, E.H., 1983. Pressure Solution in Nature, Theory and Experiment. Journal of the Geological Society, 140: 725-740.Google Scholar
  106. Rutter, E.H., Maddock, R.H., Hall, S.H. and White, S.H., 1986. Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure and Applied Geophysics, 124: 3-30.Google Scholar
  107. Sagy, A. and Brodsky, E., 2009. Geometric and rheological asperities in an exposed fault zone. Journal of Geophysical Research, 114: B02301, doi: 10.1029/2008JB005701.
  108. Sammis, C.G. & Ben-Zion, Y. (2008) Mechanics of grain-size reduction in fault zones, Journal of Geophysical Research, 113, B02306, doi: 10.1029/2006JB004892.
  109. Schlagenhauf, A., Gaudemer, Y., Benedetti, L., Manighetti, I. and Palumbo, L. 2010. Using in situ Chlorine-36 cosmonuclide to recover past earthquake histories on limestone normal fault scarps: A reappraisal of methodology and interpretations. Geophysical Journal International, 182: 36-72.Google Scholar
  110. Schmid, S.M., Panozzo, R. and Bauer, S., 1987. Simple shear experiments on calcite rocks: rheology and microfabric. Journal of Structural Geology, 9: 747-778.Google Scholar
  111. Scholz, C.H., 2002. The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge.Google Scholar
  112. Sibson, R.H., 1973. Interaction between temperature and pore-fluid pressure during earthquake faulting-A mechanism for partial or total stress relief. Nature, 243: 66-68.Google Scholar
  113. Sibson, R.H., 1975. Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophysical Journal of the Royal Astronomical Society, 43(3): 775-794.Google Scholar
  114. Sibson, R.H., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, London, 133: 191-213.Google Scholar
  115. Sibson, R.H., 2003. Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93(3): 1169-1178.Google Scholar
  116. Smith, S.A.F., Collettini, C. and Holdsworth, R.E., 2008. Recognizing the seismic cycle along ancient faults: CO 2 -induced fluidization of breccias in the footwall of a sealing low-angle normal fault. Journal of Structural Geology, 30: 1034-1046.Google Scholar
  117. Storti, F., Billi, A. and Salvini, F., 2003. Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis. Earth and Planetary Science Letters, 206(1-2): 173-186.Google Scholar
  118. Tada, R. & Siever, R. (1989) Intergranular Pressure Solution during Diagenesis, Annual Reviews of Earth and Planetary Sciences, 17, 89-118.Google Scholar
  119. Trullenque, G., Kunze, K., Heilbronner, R., Stunitz, H. and Schmid, S.M., 2006. Microfabrics of calcite ultramylonites as records of coaxial and non-coaxial deformation kinematics: Examples from the Rocher de l’Yret shear zone (Western Alps). Tectonophysics, 424(1-2): 69-97.Google Scholar
  120. Tucker, M. & Wright, V., P., (1990) Carbonate Sedimentology, 1st edn. Blackwell Science, 482 pages.Google Scholar
  121. Ujiie, K., Yamaguchi, A., Kimura, G. and Toh, S., 2007. Fluidization of granular material in a subduction thrust at seismogenic depths. Earth and Planetary Science Letters, 259(3-4): 307-318.Google Scholar
  122. Unsworth, M. and Bedrosian, P.A., 2004. Electrical resistivity structure at the SAFOD site from magnetotelluric exploration. Geophysical Research Letters, 31: L12S05, doi: 10.1029/2003GL019405.
  123. Warr, L.N. and Cox, S.J., 2001. Clay mineral transformations and weakening mechanisms along the Alpine fault, New Zealand. In: R.E.e.a. Holdsworth (Editor), The Nature and Significance of Fault Zone Weakening. Geological Society of London, Special Publications, London, pp. 85-101.Google Scholar
  124. Westaway, R. and Jackson, J., 1984. Surface faulting in the southern Italian Campania-Basilicata earthquake of 23 November 1980. Nature, 312: 436-438.Google Scholar
  125. Wibberley, C.A.J. and Shimamoto, T., 2003. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25(1): 59-78.Google Scholar
  126. Wibberley, C.A.J. and Shimamoto, T., 2005. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436(7051): 689-692.Google Scholar
  127. Wilkinson, M., McCaffrey, K.J.W., Roberts, G., Cowie, P.A., Phillips, R.J., Michetti, A.M., Vittori, E., Guerrieri, L., Blumetti, A.M., Bubeck, A., Yates, A. & Sileo, G. 2010. Partitioned postseismic deformation associated with the 2009 Mw 6.3 L’Aquila earthquake surface rupture measured using a terrestrial laser scanner. Geophysical Research Letters, 37, L10309, doi: 10.1029/2010GL043099.
  128. Zhang, X., Spiers, C.J. & Peach, C.J. 2010. Compaction creep of wet granular calcite by pressure solution at 28°C to 150°C, Journal of Geophysical Research, v.115, B09217, doi: 10.1029/2008JB005853.

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Steven A. F. Smith
    • 1
  • Andrea Billi
    • 2
  • Giulio Di Toro
    • 1
    • 3
  • Richard Spiess
    • 3
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia (INGV)RomeItaly
  2. 2.Istituto di Geologia Ambientale e Geoingegneria, CNRMonterotondo (Rome)Italy
  3. 3.Dipartimento di GeoscienzeUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations