Pure and Applied Geophysics

, Volume 168, Issue 8–9, pp 1391–1413 | Cite as

The Mid-Rivera-Transform Discordance: Morphology and Tectonic Development

  • William L. BandyEmail author
  • François Michaud
  • Carlos A. Mortera Gutiérrez
  • Jérôme Dyment
  • Jacques Bourgois
  • Jean-Yves Royer
  • Thierry Calmus
  • Marc Sosson
  • Jose Ortega-Ramirez


To better define the morphotectonic elements and tectonic development of the Mid-Rivera-Transform Discordance, multibeam bathymetric, seafloor backscatter, multichannel seismic reflection and total field marine magnetic data were collected along the entire Rivera Transform west of 107°W during the BART and FAMEX campaigns of the N.O. L’Atalante conducted in 2002. These data show that, although the transform tectonized zone of the Rivera Transform west of 107°30′W is a single continuous morphologic basin, this basin consists of two distinct morphotectonic domains: an eastern domain which morphologically is a deep rhombochasm within which organized seafloor spreading has occurred, and a western ‘leaky transform’ domain. These new data, in conjunction with the results of previous studies, support the idea that the Rivera-Pacific Euler pole is migrating southward towards the eastern half of the Rivera Transform, and further indicate a recent (<0.14 Ma), and most likely ongoing, clockwise reorganization of the principle transform displacement zones of the Rivera Transform west of 108°W. We propose that the Mid-Rivera-Transform Discordance owes its origin to this eastward progressing, clockwise reorganization of the transform segments that is occurring in response to recent changes in Rivera-Pacific relative plate motion.


Rivera Transform Plate motions Morphology Multi-beam bathymetry 



We thank the captain and crew of N/O L’Atalante and the staff of the ship operations section of IFREMER for their valuable assistance. We also thank the two anonymous reviewers for their comments which have improved the manuscript. Financial support was provided by Centre National de la Recherche Scientifique (CNRS), and by CONACyT grants 36681-T, #50235, R34906-T and 25709T, and UNAM DGAPA grants # IN104707, IN114602, IX117504, IN104199, IN110897, IN108110 and IX111304.


  1. Atwater, T. (1970), Implications of plate tectonics for Cenozoic tectonic evolution for western North America, Geol. Soc. Am. Bull. 81, 3513–3536.Google Scholar
  2. Bandy, W.L. (1992), Geological and geophysical investigation of the Rivera-Cocos plate boundary: Implications for plate fragmentation, Ph.D. Dissertation, Texas A&M University, College Station, 195 pp.Google Scholar
  3. Bandy, W.L., and Hilde, T.W.C. (2000), Morphology and recent history of the ridge propagator system located at 18°N, 106°W, In Cenozoic Tectonics and Volcanism of Mexico, Geological Society of America Special Paper 334 (eds. Delgado-Granados, H., Aguirre-Díaz and Stock, J.M), (Geological Society of America, Boulder, Colorado 2000) pp. 29–40.Google Scholar
  4. Bandy, W.L., and Yan, C.-Y. (1989), Present-day Rivera-Pacific and Rivera-Cocos relative plate motions (abs.), EOS Transactions of the American Geophysical Union 70, 1342.Google Scholar
  5. Bandy, W.L., Michaud, F., Dyment, J., Mortera-Gutierrez, C.A., Bourgois, J., Calmus, T., Sosson, M., Ortega-Ramírez, J., Royer, J.-Y., Pontoise, B., and Sichler, B. (2008), Multibeam bathymetry and sidescan imaging of the Rivera Transform-Moctezuma spreading segment junction, northern East Pacific Rise: New constraints on Rivera-Pacific relative plate motion, Tectonophysics 454, 70–85, doi: 10.1016/j.tecto.2008.04.013.
  6. Bandy, W.L., Michaud, F., Dyment, J., Mortera Gutierrez, C., Bourgois, B., Calmus, T., Sosson, M., Ortega Ramirez, J. Royer, J.-C., Pontoise, B., and Sichler B. (2007), New constraints on Rivera-Pacific relative motion from multibeam bathymetric data along the MSS and Rivera Transform (abstract), 2007 Joint Assembly of the AGU, Acapulco, Mexico, Meeting Abstracts, S31A-12.Google Scholar
  7. Bandy, W.L., Michaud, F., Bourgois, J., Calmus, T., Dyment, J., Mortera-Gutierrez, C.A., Ortega-Ramírez, J., Pontoise, B., Royer, J.-Y., Sichler, B., Sosson, M., Rebolledo-Vieyra, M., Bigot-Comier, F., Diaz-Molina, O., Hurtado-Artunduaga, A.D., Pardo-Castro, G., and Trouillard-Perrot, C. (2005), Subsidence and strike-slip tectonism of the upper continental slope off Manzanillo, Mexico, Tectonophysics 398, 115–140.Google Scholar
  8. Bandy, W.L., Hilde, T.W.C., and Yan, C.Y. (2000), The Rivera-Cocos plate boundary: Implications for Rivera-Cocos relative motion and plate fragmentation, In Cenozoic Tectonics and Volcanism of Mexico, Geological Society of America Special Paper 334 (eds. Delgado-Granados, H., Aguirre-Díaz and Stock, J.M), (Geological Society of America, Boulder, Colorado 2000) pp. 1–28.Google Scholar
  9. Bandy, W.L., Kostoglodov, V.V., Mortera-Gutierrez, C.A., and Urrutia-Fucugauchi, J. (1998a), Comment on “Relative motions of the Pacific, Rivera, North American, and Cocos plates since 0.78 Ma” by Charles DeMets and Douglas S. Wilson, J. Geophys. Res. 103, 24,245–24,250.Google Scholar
  10. Bandy, W.L., Kostoglodov, V., and Mortera-Gutiérrez, C.A. (1998b), Southwest migration of the instantaneous Rivera-Pacific Euler pole since 0.78 Ma, Geofisica Internacional 37, 153–169.Google Scholar
  11. Bourgois, J., Renard, V., Aubouin, J., Bandy, W., Barrier, E., Calmus, T., Carfantan, J.-C., Guerrero, J., Mammerickx, J., Mercier de Lepinay, B., Michaud, F., and Sosson, M. (1988), The East Pacific Rise-Rivera Fracture Zone eastern junction off Mexico: Paris, Académie des Sciences, Comptes Rendus, series II, 307, 617–626.Google Scholar
  12. Braunmiller, J., and Nábĕlek, J. (2008), Segmentation of the Blanco Transform fault zone from earthquake analysis: Complex tectonics of an oceanic transform fault, J. Geophys. Res. 113, B07108, doi: 10.1029/2007JB005213.
  13. Burkett, E.R., and Billen, M.I. (2009), Dynamics and implications of slab detachment due to ridge-trench collision, J. Geophys. Res. 114, B12404, doi: 10.1029/2009JB006402.
  14. Cande, S.C., and Kent, D.V. (1995), Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, Geophys. Res. Letts. 100, 6093–6095.Google Scholar
  15. Dauphin, J.P., and Ness, G.E. (1991), Bathymetry of the gulf and peninsular province of the Californias, In The Gulf and Peninsular Province of the Californias, AAPG Memoir 47 (eds. Dauphin, J.P. and Simoneit, B.R.T.) (AAPG, Tulsa, Oklahoma, 1991) pp. 21–24.Google Scholar
  16. Davison, I. (1994), Linked fault systems; extensional, strike-slip and contractional, In Continental Deformation (ed. Hancock, P.L.) (Pergamon Press 1994) pp. 121–142.Google Scholar
  17. deCharon, A.V. (1989), Structure and tectonics of the Cascadia segment, central Blanco Transform fault zone, M.S. Thesis, Oregon State University, Corvallis, Oregon.Google Scholar
  18. DeMets, C., and Stein, S. (1990), Present-day kinematics of the Rivera Plate and implications for tectonics of southwestern Mexico, J. Geophys. Res. 95, 21,931–21,948.Google Scholar
  19. DeMets, C., and Wilson, D.S. (1997), Relative motions of the Pacific, Rivera, North American, and Cocos plates since 0.78 Ma, J. Geophys. Res. 102, 2789–2806.Google Scholar
  20. DeMets, C., and Traylen, S. (2000), Motion of the Rivera Plate since 10 Ma relative to the Pacific and North American plates and the mantle, Tectonophysics 318, 119–159.Google Scholar
  21. Embley, R.W., and Wilson, D.S. (1992), Morphology of the Blanco Transform fault zone-NE Pacific: Implications for its tectonic evolution, Mar. Geophys. Res. 14, 25–45.Google Scholar
  22. Garfunkel, Z. (1986), Review of oceanic transform activity and development, J. Geol. Soc. London 143, 775–784.Google Scholar
  23. Gazdag, J. (1978), Wave-equation migration by phase-shift, Geophysics 43, 1342–1351.Google Scholar
  24. Gordon, R.G. (1995), Plate motions, crustal and lithospheric mobility, and paleomagnetism: Prospective viewpoint, J. Geophys. Res., 100, 24,367–24,392.Google Scholar
  25. Holcombe, T.L., and Sharman, G.F. (1983), Post-Miocene Cayman Trough evolution: a speculative model, Geology 11, 714–717.Google Scholar
  26. Holcombe, T.L., Vogt, P.R., Matthews, J.E., and Murchison, R.R. (1973), Evidence for sea-floor spreading in the Cayman Trough, Earth and Planetary Science Letters 20, 357–371.Google Scholar
  27. Kastens, K.A., Macdonald, K.C., Becker, K., and Crane, K. (1979), The Tamayo Transform fault in the mouth of the Gulf of California, Mar. Geophys. Res. 4, 129–151.Google Scholar
  28. Klitgord, K.D., and Mammerickx, J. (1982), Northern East Pacific Rise: Magnetic anomaly and bathymetric framework, J. Geophys. Res. 87, 6726–6750.Google Scholar
  29. Larson, R.L. (1972), Bathymetry, magnetic anomalies, and plate tectonic history of the mouth of the Gulf of California, Geol. Soc. Am. Bull. 83, 3345–3360.Google Scholar
  30. Ligi, M., Bonatti, E., Gasperini, L., and Poliakov, A.N.B. (2002), Oceanic broad multifault transform plate boundaries, Geology 30, 11–14.Google Scholar
  31. Lonsdale, P. (1995), Segmentation and disruption of the East Pacific Rise in the mouth of the Gulf of California, Mar. Geophys. Res. 17, 323–359.Google Scholar
  32. Lonsdale, P. (1991), Structural patterns of the Pacific floor offshore of Peninsular California, In The Gulf and Peninsular Province of the Californias, AAPG Memoir 47 (eds. Dauphin, J.P. and Simoneit, B.R.T.) (AAPG, Tulsa, Oklahoma 1991) pp. 87–125.Google Scholar
  33. Lonsdale, P. (1986), Tectonic and magmatic ridges in the Eltanin fault system, South Pacific, Mar. Geophys. Res. 8, 203–242.Google Scholar
  34. Macdonald, K.C., Castillo, D.A., Miller, S.P., Fox, P., Kastens, K.A., and Bonatti, E. (1986), Deep-Tow studies of the Vema Fracture Zone 1. Tectonics of a major slow slipping transform fault and its intersection with the Mid-Atlantic ridge, J. Geophys. Res. 91, 3334–3354.Google Scholar
  35. Mammerickx, J. (1980), Neogene reorganization of spreading between the Tamayo and the Rivera fracture zone, Mar. Geophys. Res. 4, 305–318.Google Scholar
  36. Mammerickx, J., and Klitgord, K.D. (1982), Northern East Pacific Rise: Evolution from 25 m.y.B.P. to the present, J. Geophys. Res. 87, 6751–6759.Google Scholar
  37. Mann, P., Hempton, M.R., Bradley, D.C., and Burke, K. (1983), Development of pull-apart basins, Journal of Geology 91, 529–554.Google Scholar
  38. Mauduit, T., and Dauteuil, O. (1996), Small-scale models of oceanic transform zones, J. Geophys. Res. 101, 20,195–20,209.Google Scholar
  39. Menard, H.W., and Atwater, T. (1969), Origin of fracture zone topography, Nature 222, 1037–1040.Google Scholar
  40. Merrill, R.T., and McElhinny, M.W. (1983), The Earth’s Magnetic Field: Its History, Origin and Planetary Perspective, International Geophysical Series, vol. 32 (Academic Press, New York 1983).Google Scholar
  41. Michaud, F., and Bourgois, J. (1995), Is the Rivera Fracture Zone a transform fault as currently accepted?, C.R. Acad. Sci. Paris, Série II, 321, 521–528.Google Scholar
  42. Michaud, F., Royer, J.-Y., Bourgois, J., Dyment, J., Calmus, T., Bandy, W., Sosson, M., Mortera-Gutierrez, C., Sichler, B., Rebolledo-Viera, M., and Pontoise, B., (2006), Oceanic-ridge subduction vs. slab break off: Plate tectonic evolution along the Baja California Sur continental margin since 15 Ma, Geology 34, 13–16; doi: 10.1130/G22050.1.
  43. Michaud, F., Royer, J.-Y., Bourgois, J., Mercier de Lepinay, B., and Liaudon, G.P. (1997), The Rivera Fracture Zone revisited, Marine Geology 137, 207–225.Google Scholar
  44. Michaud, F., Bourgois, J., and Aubouin, J. (1990), Active fragmentation of the west Pacific Mexican coast: The Jalisco Block a future unsuspected terrain?, In Tectonics of Circum-Pacific Continental Margins, (eds. Aubouin, J., and Bourgois J.) (VSP-BV, The Netherlands 1990) pp. 51–76.Google Scholar
  45. Pockalny, R.A., Fox, P.J., Fornari, D.J., Macdonald, K.C., and Perfit, M.R. (1997), Tectonic reconstruction of the Clipperton and Siqueiros fracture zones: Evidence and consequences of plate motion change for the last 3 Myr, J. Geophys. Res. 102, 3167–3181.Google Scholar
  46. Prothero, W.A., and Reid, I.D. (1982), Microearthquakes on the East Pacific Rise at 21°N and the Rivera Fracture Zone, J. Geophys. Res. 87, 8509–8518.Google Scholar
  47. Prothero, W.A., Reid, I., Reichle, M.S., and Brune, J.N. (1976), Ocean bottom seismic measurements on the East Pacific Rise and Rivera Fracture Zone, Nature 262, 121–124.ûGoogle Scholar
  48. Reid, I. (1976), The Rivera plate: A study in seismology and plate tectonics, Ph.D. thesis, University of California at San Diego, La Jolla, 288 p.Google Scholar
  49. Roberts, A., and Yielding, G. (1994), Continental extensional tectonics, In Continental Deformation (ed. Hancock, P.L.) (Pergamon Press, 1994) pp. 223–250.Google Scholar
  50. Searle, R.C. (1983), Multiple, closely spaced transform faults in fast-slipping fracture zones, Geology 11, 607–610.Google Scholar
  51. Schouten, H., and McCamy, K. (1972), Filtering marine magnetic anomalies, J. Geophys. Res. 35, 7089–7099.Google Scholar
  52. Singh, S.K., and Lermo, J. (1985), Mislocation of Mexican earthquakes as reported in international bulletins, Geofis. Int. 24, 333–351.Google Scholar
  53. Sylvester, A.G. (1988), Strike-slip faults, Geol. Soc. Am. Bull. 100, 1666–1703.Google Scholar
  54. Ten Brink, U.S., Rybakov, M., Al-Zoubi, A.S., Hassouneh, M., Frieslander, U., Batayneh, A.T., Goldschmidt, V., Daoud, M.H., Rotstein, Y., and Hall, J.K. (1999), Anatomy of the Dead Sea transform: Does it reflect continuous changes in plate motion?, Geology 27, 887–890.Google Scholar
  55. Turcotte, D.L. (1974), Are transform faults thermal contraction cracks?, J. Geophys. Res. 79, 2573–2577.Google Scholar
  56. Wilson, D.S., and DeMets, C. (1998), Reply, J. Geophys. Res. 103, 24,251–24,253.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • William L. Bandy
    • 1
    Email author
  • François Michaud
    • 2
  • Carlos A. Mortera Gutiérrez
    • 1
  • Jérôme Dyment
    • 3
  • Jacques Bourgois
    • 4
  • Jean-Yves Royer
    • 5
  • Thierry Calmus
    • 6
  • Marc Sosson
    • 2
  • Jose Ortega-Ramirez
    • 7
  1. 1.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxico D.FMéxico
  2. 2.Géosciences AzurVillefranche-sur-MerFrance
  3. 3.Institut de Physique du Globe de ParisParisFrance
  4. 4.Institut des Sciences de la Terre Paris (ISTEP), UPMC-CNRSUniversité Pierre et Marie CurieParisFrance
  5. 5.CNRS, Domaines Océaniques, Institut Universitaire Européen de la MerPlouzanéFrance
  6. 6.ERNO, Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoHermosilloMéxico
  7. 7.Geophysics LaboratoryInstituto Nacional de Antropología e HistoriaMéxico D.FMéxico

Personalised recommendations