Pure and Applied Geophysics

, Volume 168, Issue 8–9, pp 1373–1389 | Cite as

Imaging the Seismic Crustal Structure of the Western Mexican Margin between 19°N and 21°N

  • Rafael Bartolomé
  • Juanjo Dañobeitia
  • François Michaud
  • Diego Córdoba
  • Luis A. Delgado-Argote


Three thousand kilometres of multichannel (MCS) and wide-angle seismic profiles, gravity and magnetic, multibeam bathymetry and backscatter data were recorded in the offshore area of the west coast of Mexico and the Gulf of California during the spring 1996 (CORTES survey). The seismic images obtained off Puerto Vallarta, Mexico, in the Jalisco subduction zone extend from the oceanic domain up to the continental shelf, and significantly improve the knowledge of the internal crustal structure of the subduction zone between the Rivera and North American (NA) Plates. Analyzing the crustal images, we differentiate: (1) An oceanic domain with an important variation in sediment thickness ranging from 2.5 to 1 km southwards; (2) an accretionary prism comprised of highly deformed sediments, extending for a maximum width of 15 km; (3) a deformed forearc basin domain which is 25 km wide in the northern section, and is not seen towards the south where the continental slope connects directly with the accretionary prism and trench, thus suggesting a different deformational process; and (4) a continental domain consisting of a continental slope and a mid slope terrace, with a bottom simulating reflector (BSR) identified in the first second of the MCS profiles. The existence of a developed accretionary prism suggests a subduction–accretion type tectonic regime. Detailed analysis of the seismic reflection data in the oceanic domain reveals high amplitude reflections at around 6 s [two way travel time (twtt)] that clearly define the subduction plane. At 2 s (twtt) depth we identify a strong reflection which we interpret as the Moho discontinuity. We have measured a mean dip angle of 7° ± 1° at the subduction zone where the Rivera Plate begins to subduct, with the dip angle gently increasing towards the south. The oceanic crust has a mean crustal thickness of 6.0–6.5 km. We also find evidence indicating that the Rivera Plate possibly subducts at very low angles beneath the Tres Marias Islands.


Rivera Plate Middle America Trench crustal structure seismic imaging subduction plate BSR 



Funding is from the Spanish National Research Project (ANT94-0182-C02-01/02). Additional funding comes from INSU-France, ORSTOM-IRD, France bilateral cooperation (HF1997-077), and CSIC/CONACYT 0894PT, the Secretaría de Marina of Mexico, CICESE project 644107 and by CIRIT (Project 1995SGR00438). We acknowledge the captain and crew of the R/V Hespérides, Altair and Humboldt, and all the scientific and technical staff that participated in the CORTES-P96 seismic experiments for their support during the experiment, and the Mexican authorities for facilitating work within their exclusive economic zone. The figures were done using the Generic Mapping Tools-GMT, Wessel, P. & Smith, W., (1995). R. Bartolome acknowledges the financial support of the Spanish Ministry of Science and Innovation (Ramon y Cajal program).


  1. Atwater, T. (1970), Implications of plate tectonics for the Cenozoic tectonic evolution of western North America, Geol. Soc. Am. Bull. 81, 3513–3536.Google Scholar
  2. Atwater, T. (1989), Plate Tectonic history of the Northeast Pacific and Western North America, in The Eastern Pacific Ocean and Hawaii—The Geology of North America N, Winterer, R. W.E., Hussong, L., Decker D.M., Eds: Geological Society of America, Boulder, pp. 21–72.Google Scholar
  3. Bandy, W.L., and Yan, C.Y. (1989), Present-day Rivera-Pacific and Rivera-Cocos relative plate motions (abstract), Eos trans. Am. Geophys. Union, 70, 1342.Google Scholar
  4. Bandy, W.L. (1992), Geological and geophysical investigation of the Rivera-Cocos plate boundary: implications for plate fragmentation, Ph.D. Dissertation, Texas A&M University, College Station, 195 p.Google Scholar
  5. Bandy, W., Mortera-Gutierrez, C.A., and Urrutia-Fucugauchi, J. (1993), Gravity field of the southern Colima Graben, Mexico, Geofis. Intern. 32, 561–567.Google Scholar
  6. Bandy, W., and Pardo, M. (1994), Statistical examination of the existence and relative motion of the Jalisco and Southern Mexico blocks, Tectonics 13, 755–768.Google Scholar
  7. Bandy, W.L., Kostoglodov, V., and Mortera-Gutierrez, C.A. (1998), Southwest migration of the instantaneous Rivera-Pacific Euler pole since 0.78 Ma, Geof. Int. 37, 153–169.Google Scholar
  8. Bandy, W., Kostoglodov, V., Hurtado-Diaz, A., and Mena, M. (1999), Structure of the southern Jalisco subduction zone, Mexico, as inferred from gravity and seismicity, Geofísica Internacional 38 (3), 127–136.Google Scholar
  9. Bandy, W.L., Michaud, F., Bourgois, J., Calmus, T., Dyment, J., Mortera-Gutiérrez, C.A., Ortega-Ramírez, J., Pontoise, B., Royer, J.-Y., Sichler, B., Sosson, M., Rebolledo-Vieyra, M., Bigot-Cormier, F., Díaz-Molina, O., Hurtado-Artunduaga, A.D., Pardo-Castro, G., and Trouillard-Perrot, C. (2005), Subsidence and strike-slip tectonism of the upper continental slope off Manzanillo, Mexico, Tectonophysics 398, 115–140.Google Scholar
  10. Bourgois, J., Renard, V., Aubouin, J., Bandy, W., Barrier, E., Calmus, T., Carfantan, J. C., Guerrero Garcia, J., Mammerickx, J., Mercier de Lepinay, B., Michaud, F., and Sosson, M. (1988), Fragmentation en cours du continent Nord Américain: les frontières sous marines du bloc de Jalisco (Mexique), C. R. Acad. Sc. Paris 307 II, 1121–1130.Google Scholar
  11. Bourgois, J., and Michaud, F. (1991), Active fragmentation of the North American plate at the Mexican Triple Junction Area off Manzanillo (Mexico), Geomarine Letters 11, 59–65.Google Scholar
  12. Brooks, J.M., Field, M.E., and Kennicutt II, M.C. (1991), Observations of gas hydrates in marine sediments, offshore northern California, Marine Geology 96, 103–109.Google Scholar
  13. Couch, R., and Woodcock, S. (1981), Gravity and structure of the continental margins of southwestern Mexico and northwestern Guatemala, J. Geophys. Res. 86, 1829–1840.Google Scholar
  14. Courboulex, F., Singh, S.K., Pacheco, J.F., and Ammon, C.J. (1997), The 1995 Colima-Jalisco, Mexico, earthquake (Mw=8): a study of the rupture process, Geophys. Res. Lett. 24, 1019–1022.Google Scholar
  15. Currie, C.A., Hyndman, R.D., Wang, K., Kostoglodov, V. (2002), Thermal models of the Mexico subduction zone: Implications for the megathrust seismogenic zone, Journal of Geophy. Res. 107, No. B12.Google Scholar
  16. Dañobeitia, J.J., Córdoba, D., Delgado-Argote, L.A., Michaud, F., Bartolomé, R., Farrán, M., and CORTES-P96 Working Group (1997), Expedition gathers new data on crust beneath Mexican West Coast, EOS Trans. Am. Geophys. Union 78 (49), 565–572.Google Scholar
  17. Davies, G. F. (1992), On the emergence of plate tectonics, Geology 20,963–966.Google Scholar
  18. DeMets, C., and Stein, S. (1990), Present-Day kinematics of the Rivera Plate and Implications for Tectonics in Southwestern Mexico, J. Geophys. Res. 95 (B13), 21931–21948.Google Scholar
  19. DeMets, C., and Wilson, D. (1997), Relative motions of the Pacific, Rivera, North American and Cocos plates since 0.78 Ma, J. Geophys. Res. 102, 2789–2806.Google Scholar
  20. DeMets, C., and Traylen, S. (2000), Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle, in The Influence of plate interaction on post-Laramide magmatism and tectonics in Mexico, Ferrari, L., Stock, J., Urrutia-Fucugauchi J., Eds: Tectonophysics 318 (1–4), 119–159.Google Scholar
  21. Eissler, H. K., and McNally, K. C. (1984), Seismicity and tectonics of the Rivera Plate and implications for the 1932 Jalisco, Mexico, earthquake, J. Geophys. Res. 89, 4520–4530.Google Scholar
  22. Ferrari, L., Petrone, Ch., and Francalanci, L. (2001), Generation of oceanic-island basalt type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration and variable flux meeting, Geology 29, 507–510.Google Scholar
  23. GEBCO, 2008 Bathymetric dataset, http://www.gebco.net/.
  24. Hyndman, R.D., Spence, G.D., Chapman, R., Riedel, M., and Edwards, R.N. (2001), Geophysical studies of marine gas hydrate in northern Cascadia, in: Natural Gas Hydrates: Occurrence, and Detection Geophysical Monograph 124, American Geophysical Union.Google Scholar
  25. Johnson, M.C., and Plank, T. (1999), Dehydration and melting experiments constrain the fate of subducted sediments, Geochem. Geophys. Geosyst., vol. 1, p.1999GC000014.Google Scholar
  26. Kastner, M., Keene, J.B., and Gieskes, J.M. (1977), Diagenesis of siliceous oozes-I. Chemical controls on the rate of opal-A to opal-CT transformation an experimental study, Geochimica et Cosmochimica Acta 41, 1041–1059.Google Scholar
  27. Khutorskoy, M.D., Delgado-Argote, L.A., Fernández, R., Kononov, V.I., and Polyak, B.G. (1994), Tectonics of the offshore Manzanillo and Tecpan basins, Mexican Pacific, from heat flow, bathymetric and seismic data, Geofís. Intern. 33, 161–185.Google Scholar
  28. Klitgord, K., and Mammerickx, J. (1982), Northern East Pacific rise: magnetic anomaly and bathymetric framework, J. Geophys. Res. 100, 24367–24392.Google Scholar
  29. Korenaga, J., Holbrook, W.S., Singh, S.C., and Minshull, T.A. (1997), Natural gas hydrates on the southeast U.S. margin: Constraints from full waveform and travel time inversions of wide-angle seismic data, J. Geophys. Res. 102, 15345–15365.Google Scholar
  30. Kostoglodov, V., and Bandy, W. (1995), Seismotectonic constraints on the convergence rate between the Rivera and North America plates, J. Geophys. Res. 100, 17977–17989.Google Scholar
  31. Lonsdale, P. (1985) A transform Continental Margin rich in hydrocarbons, Gulf of California, The American Association of Petroleum Geologists Bulletin 69 (7), 1160–1180.Google Scholar
  32. Lonsdale, P. (1989), Geology and tectonic history of the Gulf of California, in The Eastern Pacific Ocean and Hawaii, Geological Society of America Winterer, E.L., Hussong, D.M., Decker, R.W., Eds: The Geology of North America, pp. 499–521.Google Scholar
  33. Lonsdale, P., (1991) Structural patterns of the Pacific floor offshore of peninsular California, in The Gulf and Peninsular province of the Californias, Dauphin, J.P., Simoneit, B.R.T., Eds: Am. Assoc. Pet. Geol. Mem. 47, pp. 87–125.Google Scholar
  34. Lonsdale, P. (1995), Segmentation and disruption of the East Pacific Rise in the mouth of the Gulf of California, Mar. Geophys. Res. 17, 323–359.Google Scholar
  35. Lüdmann, T., and Wong, H.K. (2003), Characteristics of gas hydrate occurrences associated with mud diapirism and gas scape structures in the northwestern Sea of Okhotsk, Marine Geology 201, 269–286.Google Scholar
  36. Luhr, J.F., Nelson, S.A., Allan, J.F., and Carmichael, I.S.E. (1985), Active rifting in SW Mexico: manifestations of an incipient eastward spreading-ridge jump, Geology 13, 54–57.Google Scholar
  37. Mammerickx, J., and Klitgord, K. (1982), Northern East Pacific Rise: evolution from 25 m.y.B.P. to the Present, J. Geophys. Res. 87, 6751–6759.Google Scholar
  38. Mammerickx, J. (1984), The Morphology of propagating spreading centers: New and old, J. Geophys. Res. 89, 1817–1828.Google Scholar
  39. McCloy, C., Ingle, J.C., and Barron, J.A. (1988), Neogene stratigraphy, foraminifera, diatoms, and depositional history of María Madre Island Mexico: Evidence of Early Neogene marine conditions in the southern Gulf of California, Marine Micropaleontology 13, 193–212.Google Scholar
  40. Mercier de Lepinay, B., Michaud, F., and the Nautimate team (1997), Large Neogene Subsidence along the Middle America trench off Mexico (18°-19°N): Evidence from Submersible Observations, Geology 25 (5), 387–390.Google Scholar
  41. Michaud, F., Mercier de Lepinay, B., Bourgois, J., and Calmus, T. (1996), Evidence for active extensional tectonic features within the Acapulco trench fill at the Rivera-North America plate boundary, C.R.Acad. Sci., Paris t. 321 série IIa, 521–528.Google Scholar
  42. Michaud, F., Dañobeitia, J.J., Bartolome, R., Carbonell, R., Delgado-Argote, L., Cordoba, D., and Monfret, T. (2001), Did the East Pacific rise subduct beneath the North America plate (western Mexico)?, Geo-Marine Letters 20, 168–173.Google Scholar
  43. Minshull, T., Bartolomé, R., Byrne, S., and Dañobeitia, J. J. (2005), Low heat flow from young oceanic lithosphere at the Middle America Trench off Mexico, Earth and Planetary Science Letters, 239, 33–41, doi: 10.1016/j.epsl.2005.05.045.
  44. Moore, J. C., Watkins, J. S., and Shipley, T. H (1982) Summary of accretionary processes, Leg 66 DSDP: Offscraping, underplating, and deformation of the slope apron: Initial Reports of the Deep Sea Drilling Project, v. 66, U.S. Government Printing Office Washington D.C., pp. 825–836.Google Scholar
  45. Nixon, G.T. (1982), The relatioship between Quaternay volcanism in central Mexico and the seismicity and structure of subducted oceanic lithosphere, Geol. Soc. Am. Bull. 93, 514–523.Google Scholar
  46. Pacheco, F.J., Singh, S.K., Dominguez, J., Hurtado, A., Quintanar, L., Jimenez, Z., Yamamoto, J., Gutierrez, C., Santoyo, M., Bandy, W., Guzman, M., and Kostoglodov, V. (1997), The October 9, 1995 Colima-Jalisco, Mexico earthquake (Mw 8): An aftershock study and a comparison of this earthquake with those of 1932, Geophys. Res. Lett. 24 (17), 2223–2226.Google Scholar
  47. Pardo, M., and Suárez, G. (1993), Steep subduction geometry of the Rivera plate beneath the Jalisco Block in western Mexico, Geophys. Res. Lett. 20, 2391–2394.Google Scholar
  48. Pardo, M., and Suárez, G. (1995), Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. J. Geophys. Res. 100, 12,357–12,373.Google Scholar
  49. Pecher, I. A., Minshull, T. A., Singh, S.C., and von Huene, R. (1996), Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion, Earth Planet. Sci. Lett. 139, 459–469.Google Scholar
  50. Pecher, I. A., Ranero, C. R., von Huene, R., Minshull, T. A., and Singh, S. C. (1998), The nature and distribution of bottom simulating reflectors at the Costa Rican convergent margin, Earth Planet. Sci. Lett. 139, 459–469.Google Scholar
  51. Prol-Ledesma, R. M., Sugrobov, V. M., Flores, E. L., Juarez, G., Smirnov, Y. B., Gorshkov, A. P., Bondarenko, V. G., Rashidovm, V. A., Nedopekin, L. N., and Gavrilov, V. A. (1989), Heat flow variations along the Middle America Trench, Mar. Geophys. Res. 11, 69–76.Google Scholar
  52. Ramírez-Herrera, M.T., and Urrutia-Fucugauchi, J. (1999), Morphotectonic zones along the coast of the Pacific continental margin, southern Mexico, Geomorphology 28, 237–250.Google Scholar
  53. Ramirez-Herrera, M. T., Kostoglodov, V., and Urrutia-Fucugauchi, J. (2004), Holocene emerged notches and tectonic uplift along the Jalisco coast, Southwest Mexico, Geomorphology 58, 291–304.Google Scholar
  54. Shipley, T. H., Houston, M. H., and Buffer, R.T. (1979), Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises, Am. Assoc. Pet. Geol. Bull. 63, 2204–2213.Google Scholar
  55. Singh, S. K., Ponce, L., and Nishenko, S. (1985), The great jalisco, Mexico earthquake of 1932: subduction of the Rivera plate, Bull. Seismic. Soc. Amer. 75, 1301–1313.Google Scholar
  56. Singh, S.K., Pacheco, J.F., Alcántara, L., Reyes, G., Ordaz, M., Iglesias, A., Alcocer, S.M., Gutierrez, C., Valdés, C., Kostoglodov, V., Reyes, C., Mikumo, T., Quaas, R., and Anderson, J. G. (2003), A Preliminary Report on the Tecomán, Mexico Earthquake of 22 January 2003 (Mw7.4) and its effects, Seismological Research Letters 74, 279–289.Google Scholar
  57. Stern. R.J. (2002), Subduction zones, Reviews of Geophysics, 40, 4.Google Scholar
  58. von Huene, R., Ranero, C. R., and Watts, P. (2004), Tsunamigenic slope failure along the Middle America Trench in two tectonic settings, Marine Geology 203, 303–317.Google Scholar
  59. Wang, K., Hyndman, R.D., Yamano, M. (1995), Thermal regime of the southwest Japan subduction zone: Effects of age history of the subducting plate, Tecnonophysics 248, 53–69.Google Scholar
  60. Yuan, J., and Edwards, R. N. (2000), The assessment of marine gas hydrates through electrical remote sounding: Hydrate without a BSR?, Geophysical Research Letters 27 (16), 2397–2400.Google Scholar
  61. Ziagos, J. P., Blackwell, D. D., and Mooser, F. (1985), Heat flow in southern Mexico and the thermal effects of subduction, J. Geophy. Res. 90, 5410–5420.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Rafael Bartolomé
    • 1
  • Juanjo Dañobeitia
    • 1
  • François Michaud
    • 2
  • Diego Córdoba
    • 3
  • Luis A. Delgado-Argote
    • 4
  1. 1.Centre Mediterrani d′Investigacions Marines i Ambientals (CMIMA)Unidad de Tecnología Marina-CSIC, Passeig Marítim de la Barceloneta 37-49BarcelonaSpain
  2. 2.Géosciences Azur, UMR 6526Université Pierre et Marie-CurieVillefranche-sur-Mer CedexFrance
  3. 3.Universidad Complutense de Madrid, 28040 Ciudad UniversitariaMadridSpain
  4. 4.CICESEEnsenadaMexico

Personalised recommendations