Pure and Applied Geophysics

, Volume 168, Issue 8–9, pp 1339–1353 | Cite as

Source Characteristics of the 22 January 2003 Mw = 7.5 Tecomán, Mexico, Earthquake: New Insights

  • Luis Quintanar
  • Héctor E. Rodríguez-Lozoya
  • Roberto Ortega
  • Juan M. Gómez-González
  • Tonatiuh Domínguez
  • Clara Javier
  • Leonardo Alcántara
  • Cecilio J. Rebollar
Article

Abstract

Aftershock locations, source parameters and slip distribution in the coupling zone between the overriding North American and subducted Rivera and Cocos plates were calculated for the 22 January 2003 Tecomán earthquake. Aftershock locations lie north of the El Gordo Graben with a northwest-southeast trend along the coast and superimposed on the rupture areas of the 1932 (Mw = 8.2) and 1995 (Mw = 8.0) earthquakes. The Tecomán earthquake ruptured the northwest sector of the Colima gap, however, half of the gap remains unbroken. The aftershock area has a rectangular shape of 42 ± 2 by 56 ± 2 km with a shallow dip of roughly 12° of the Wadati-Benioff zone. Fault geometry calculated with the Nábělek (1984) inversion procedure is: (strike, dip, rake) = (277°, 27°, 78°). From the teleseimic body wave spectra and assuming a circular fault model, we estimated source duration of 20 ± 2 s, a stress drop of 5.4 ± 2.5 MPa and a seismic moment of 2.7 ± .7 × 1020 Nm. The spatial slip distribution on the fault plane was estimated using new additional near field strong motion data (54 km from the epicenter). We confirm their main conclusions, however we found four zones of seismic moment release clearly separated. One of them, not well defined before, is located toward the coast down dip. This observation is the result of adding new data in the inversion. We calculated a maximum slip of 3.2 m, a source duration of 30 s and a seismic moment of 1.88 × 1020 Nm.

Keywords

Rupture process focal mechanism inversion waveform modeling 

References

  1. Beresnev, I. A. (2003), Uncertainties in Finite-Fault Slip Inversion: To What Extent to Believe?, Bull. Seismol. Soc. Am. 93, 2445–2458.Google Scholar
  2. Bezzeghoud, M., Deschamps, A. and Madariaga, R., Broad–band P-wave Signals and Spectra from Digital stations. In Digital Seismology and Fine Modeling of the Lithosphere (eds. Cassinis, R., Nolet, G., and Panza, G.F.) (Plenum Press, New York, 351–374, 1989).Google Scholar
  3. Brune, J.N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys Res. 75, 4997–5009.Google Scholar
  4. Futterman, W.I. (1962). Dispersive body waves, J. Geophys. Res. 67, 5279–5291.Google Scholar
  5. Suárez. G., Garcia–Acosta, V. and Gaulon, R. (1994), Active crustal deformation in the Block, Mexico: evidence for great historical earthquake in the 16th century, Tectonophysics 234, 117–127.Google Scholar
  6. Hartzell, S. H. and Heaton, T.H. (1983), Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California earthquake, Bull. Seismol. Soc. Am. 73, 1553–1583.Google Scholar
  7. Ide, S., Beroza, G.C. and McGuire, J.J., Imaging earthquake source complexity, Geophysical Monograph 157, Seismic earth: Array analysis of broadband seismograms (eds. Levender, A. and Nolet, G. (American Geophysical Union, Washington, D. C., pp, 2005).Google Scholar
  8. Kikuchi, M., and Kanamori, H. (1991), Inversion of Complex Body Waves-III, Bull. Seism. Soc. Am. 81, 2335–2350.Google Scholar
  9. Kohketsu, K. (1985), The extended reflectivity method for synthetic near-field seismograms, J. Phys. Earth 33, 121–131.Google Scholar
  10. Kostoglodov, V., and Bandy, W. (1995), Seismotectonic constraints on the rate between the Rivera and North American plates, J. Geophys. Res. 100, 977–990.Google Scholar
  11. Nábělek, J. (1984), Determination of earthquake source parameters from inversion of body waves, PhD. Thesis (Mass. Inst. of Technol., Cambridge), 346 pp.Google Scholar
  12. Núñez-Cornu, F. J., Reyes-Dávila, G.A., Rutz López, M., Trejo Gomez, R., Camarena-García, M.A. and Ramírez-Vazquez, C.A. (2004), The 2003 Armeria, Mexico Earthquake (M w = 7.4): Mainshock and early aftershocks, Seismological Research Letters 75, pp. 506–605.Google Scholar
  13. Pacheco, J. F., and Sykes, L. (1992), Seismic moment catalog of large shallow earthquakes, 1900 to 1989, Bull. Seismol. Soc. Am. 82, 1306–1349.Google Scholar
  14. Pacheco, J., Singh, S. K., Dominguez, J., Hurtado, A., Quintanar, L., Jiménez, Z., Yamamoto, J., Gutiérrez, C., Santoyo, M., Bandy, W., Guzman, M., Kostoglodov, V., Reyes, G. and Ramírez, C. (1997), The October 9, 1995 Colima–Jalisco, Mexico earthquake (Mw 8): an aftershock study and comparison of this earthquake with those of 1932, Geophys. Res. Lett. 24, 2223–2226.Google Scholar
  15. Pardo, M., and Suárez, G. (1995), Shape of the subducted Rivera and Cocos plates in Southern Mexico: Seismic and tectonic implications, J. Geophys. Res. 100, 12357–12373.Google Scholar
  16. Reyes, A., Brune, J. N. and Lomnitz, C. (1979), Source mechanism and aftershock study of the Colima, Mexico earthquake of January 30, 1973, Bull. Seismol. Soc. Am. 69, 1819–1840.Google Scholar
  17. Singh, S.K., Ponce, L. and Nishenko, S. P. (1985), The great Jalisco, Mexico, earthquakes of 1932: subduction of the Rivera plate, Bull. Seism. Soc. Am. 75, 1301–1313.Google Scholar
  18. Singh, S. K., Pacheco, J. F., Alcántara, L., Reyes, G., Ordaz, M., Iglesias, A., Alcocer, S. M., Gutierrez, C., Valdés, C., Kostoglodov, V., Reyes, C., Mikumo, T., Quaas, R., Anderson, J.G. (2003), Contributions. A Preliminary Report on the Tecomán, Mexico Earthquake of 22 January 2003 (Mw 7.4) and Its Effects. Seism. Res. Lett. 74, 279–289.Google Scholar
  19. Yagi, Y., Kikuchi, M., Yoshida, S. (1999), Comparison of the coseismic rupture with the aftershock distribution in the Hyuga-nada earthquakes of 1996, Geophys. Res. Lett. 26, 3161–3164.Google Scholar
  20. Yagi, Y., Mikumo, T., Pacheco, J., and Reyes, G. (2004), Source rupture process of Tecoman, Colima, Mexico earthquake of January 22, 2003, determined by joint inversion of teleseismic body-wave and near-source data, Bull. Seismol. Soc. Am. 94, 1795–1807.Google Scholar
  21. Yoshida, S. (1989), Waveform inversion using ABIC for the rupture process of the 1983 Hindu-Kush earthquake, Phys. Earth Planet. Inter. 56, 389–405.Google Scholar
  22. Yoshida, S. (1992), Waveform inversion for rupture process using a non-flat seafloor model: application to 1986 Andreanof Islands and 1985 Chile earthquakes, Tectonophysics 211, 45–59.Google Scholar
  23. Zobin, V.M. and Pizano-Silva, J.A. (2007), Macroseismic Study of the M w 7.5 21 January 2003 Colima, México, Across-Trench Earthquake, Bull. Seismol. Soc. Am. 97, 1221–1832.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Luis Quintanar
    • 1
  • Héctor E. Rodríguez-Lozoya
    • 2
  • Roberto Ortega
    • 3
  • Juan M. Gómez-González
    • 4
  • Tonatiuh Domínguez
    • 5
  • Clara Javier
    • 6
  • Leonardo Alcántara
    • 7
  • Cecilio J. Rebollar
    • 8
  1. 1.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  2. 2.Facultad de Arquitectura, Facultad de Ingeniería CivilUniversidad Autónoma de SinaloaCuliacánMexico
  3. 3.Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad La PazLa PazMexico
  4. 4.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
  5. 5.Observatorio Vulcanológico de ColimaUniversidad de ColimaColimaMexico
  6. 6.Comisión Federal de Electricidad, Gerencia de Estudios de Ingeniería CivilGuadalajaraMexico
  7. 7.Instituto de IngenieríaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  8. 8.Centro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico

Personalised recommendations