Advertisement

Pure and Applied Geophysics

, Volume 168, Issue 10, pp 1749–1758 | Cite as

Coseismic Slip from the 6 October 2008, M w6.3 Damxung Earthquake, Tibetan Plateau, Constrained by InSAR Observations

  • Xuejun Qiao
  • Shaomin Yang
  • Ruilin Du
  • Linlin Ge
  • Qi Wang
Article

Abstract

Coseismic deformation fields of the 6 October 2008 M w6.3 Damxung earthquake were obtained from interferometric synthetic aperture radar by using three descending and two ascending Envisat images. Significant coseismic surface deformation occurred within 20 km × 20 km of the epicenter with a maximum displacement of ~0.3 m along the satellite line of sight. We model a linear elastic dislocation in a homogeneous half space and use a nonlinear constraint optimized algorithm to estimate the fault location, geometry and slip distribution. The results indicate a moment magnitude M w6.3, and the earthquake is dominated by oblique normal and right-lateral slip with a maximum slip of 2.86 m at depth of 8 km. The rupture plane is about 15 km × 14 km with strike S190°W and dip 55° to NW, located at a secondary fault of the Southeastern Piedmont of the Nyainqentanglha Mountains. Slip on normal faults in the Tibetan Plateau contributes to the rift evolution.

Keywords

InSAR Coseismic deformation Damxung earthquake Southeastern Piedmont of the Nyainqentanglha Mountains 

Notes

Acknowledgments

We are grateful to the ESA for providing Envisat images (C1P. 5070). This work is supported by NSFC (40774014, 40674054 and 40674009). Some figures are plotted by GMT software (Wessel and Smith, 1998). We thank four reviewers and the editor for their helpful comments to improve our manuscript.

References

  1. Armijo, R., Tapponnier, P., and Han, T. L. (1989), Late Cenozoic right-lateral strike-slip faulting in southern Tibet, J Geophys Res 94(B3), 2787–2838Google Scholar
  2. Armijo, R., Tapponnier, P., Mercier, J. L., and Hang T. (1986), Quaternary extension in Southern Tibet: field observations and tectonic implications, J Geophys Res 91(B14), 13803–13872Google Scholar
  3. Burgmann, R., Segall, P., Lisowski, M., and Svarc, J. (1997), Postseismic strain following the 1989 Loma Prieta earthquake from GPS and leveling measurements, J Geophys Res 102(b3), 4933–4955Google Scholar
  4. Chen C., and Zebker H. (2000), Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms, J Opt Soc Am A:Opt, Image Sci, Vis. 17(3), 401–414Google Scholar
  5. Chen Q., Freymueller J. T., Wang Q., Yang Z. Xu C., and Liu J. (2004), A deforming block model for the present-day tectonics of Tibet, J Geophys Res 109, B01403, doi: 10.1029/2002JB002151
  6. Chen, Z., Xie, P., Shen, X., Cao, Z., Hong, S., and Jing, F. (2006), Activity of the Ningjinkangsha west piedmont fault in southern Tibet in later Quaternary (in Chinese), Prog Geophys 1, 118–126Google Scholar
  7. Cogan, M. J., Nelson, K. D., Kidd, W. S. F., Wu, C., and Project INDEPTH Team. (1998), Shallow structure of the Yadong-Gulu rift, southern Tibet, from refraction analysis of Project INDEPTH common midpoint data, Tectonics 17(1), 46–61Google Scholar
  8. Copley, A., and McKenzie, D. (2007), Models of crustal flow in the India–Asia collision zone, Geophys J Int 169, 683–698, doi: 10.1111/j.1365-246X.2007.03343.x
  9. Defense department for earthquake and hazard of CEA, The catalogue of historical stronger earthquakes from 23 century BC to 1911, (Seismic Press 1995)Google Scholar
  10. Ekstrom, G., Dziewonski A. M., Maternovskaya, N. N., and Nettles, M., (2005), Global seismicity of 2003: centroid moment-tensor solutions for 1,087 earthquakes, Phys Earth Planet Int 148, 327–351Google Scholar
  11. Gan, W., Zhang, P., Shen, Z., Niu, Z., Wang, M., Wan, Y., Zhou, D., and Cheng, J. (2007), Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements, J Geophys Res 112, B08416, doi: 10.1029/2005JB004120
  12. Geology Institute of China Seismological Bureau, Active faults in central Tibet (in Chinese), (Seismic Press, 1992) 31–104Google Scholar
  13. Goldstein, R. M., and Werner, C. L. (1998), Radar interferogram filtering for geophysical applications, Geophys Res Lett 25, 4035–4038Google Scholar
  14. Hanssen, R. F., Radar interferometry: data interpretation and analysis, (Kluwer, Dordretch. 2001)Google Scholar
  15. Jiang, C. and Wu, Z. (2006), Location accuracy of the China national seismograph network estimated by repeating events, Earthq Res China 20(1), 72–79Google Scholar
  16. Kapp, J. L. D., Harrison, T. M., Kapp, P., Grove, M., Lovera, O. M., and Lin, D. (2005), Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet, J Geophys Res 110, B08413, doi: 10.1029/2004JB003330
  17. Kapp, P., and Guynn, J. H. (2004), Indian punch rifts Tibet, Geology 32, 993–996, doi: 10.1130/G20689.1
  18. Langin, W. R., Brown, L. D., and Sandvol, E. A. (2003), Seismicity of central Tibet from project INDEPTH III seismic recordings, Bull Seismol Soc Am 93(5), 2146–2159, doi:  10.1785/0120030004
  19. Lohman, R., and Simons, M., (2005a), Some thoughts on the use of InSAR data to constrain models of surface deformation: noise structure and data downsampling, Geochem, Geophys, Geosyst 6, Q01007, doi: 10.1029/2004GC000841
  20. Lohman, R., Simons, M. (2005b), Locations of selected small earthquakes in the Zagros mountains, Geochem, Geophys, Geosyst 6(1), Q03001, doi: 10.1029/2004GC000849
  21. Massonnet, D., and Feigl, K. (1998), Radar interferometry and its application to changes in the earth’s surface, Rev Geophys 36(4), 441–500Google Scholar
  22. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T. (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364(6433), 138–142Google Scholar
  23. McCarey, R., and Nabelek, J. (1998), Role of oblique convergence in the active deformation of the Himalayas and southern Tibet plateau, Geology 26, 691–694, doi: 10.1130/0091-7613(1998)026
  24. Molnar, P., England, P., and Martinod, J. (1993), Mantle dynamics, uplift of the Tibetan plateau, and the India monsoon, Rev Geophys 31, 357–396Google Scholar
  25. Molnar, P., and Tapponnier, P. (1978), Active tectonics of Tibet, J Geophys Res 83(B11), 5361–5375Google Scholar
  26. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull Seismol Soc Am 75(4), 1135–1154Google Scholar
  27. Peltzer, G., and Rosen, P. (1995), Surface displacement of the 17 May 1993 Eureka Valley, California, Earthquake Observed by SAR Interferometry, Science 268(5215), 1333–1336Google Scholar
  28. Rosen, P., Hensley, S., Peltzer, G., and Simons, M. (2004), Updated repeat orbit interferometry package released, Eos Trans AGU 85(5), doi: 10.1029/2004EO050004
  29. Royden, L. H., Burchel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., and Liu, Y. (1997), Surface deformation and lower crustal flow in eastern Tibet, Science 276(5313), 788–790, doi: 10.1126/science.276.5313.788
  30. Simons, M., Fialko, Y., and Rivera, L. (2002), Coseismic deformation from the 1999 M w 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations, Bull Seismol Soc Am 92(4), 1390–1402Google Scholar
  31. Sun, J., Shen, Z., Xu, X., and Burgmann, R. (2008), Synthetic normal faulting of the 9 January 2008 Nima (Tibet) earthquake from conventional and along-track SAR interferometry, J Geophys Res 35, L22308, 2008doi: 10.1029/2008GL035691
  32. Tapponnier, P., Mercier, J. L., Armijo, R., Han, T., and Zhou, J. (1981), Field evidence for active normal fault in Tibet, Nature 294, 410–414, doi: 10.1038/29441
  33. Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J. (2001), Oblique stepwise rise and growth of the Tibet Plateau, Science, 294(5547), 1671–1677Google Scholar
  34. Taylor, M., and Yin, A. (2009), Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 5(3), 199–214, doi: 10.1130/GES00217.1
  35. Wang, Q., Zhang, P., Freymuller, J., Bilham, R., Larson, K., Lai, X., You, X., Niu, Z., Wu, J., Li, Y., Liu, J., Yang, Z., and Chen, Q. (2001), Present-day crustal deformation in China constrained by Global Positioning System measurements, Science 294(5542), 574–577Google Scholar
  36. Wessel, P., and Smith, W. H. F. (1998) New, improved version of generic mapping tools released, EOS Trans AGU 79, 579–579Google Scholar
  37. Wright, T., Parsons, B., England, P., and Fielding, E. (2004), InSAR observations of low slip rates on the major faults of western Tibet, Science 305(5681), 236–239Google Scholar
  38. Yin, A. (2000), Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision, J Geophys Res 105(B9), 21745–21760, doi: 10.1029/2000JB900168
  39. Zhang, P., Shen, Z.,Wang, M., Gan, W., Burgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Sun, H., and You, X. (2004), Continuous deformation of the Tibetan Plateau from Global Positioning System data, Geology 32(9), 809–812Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Xuejun Qiao
    • 1
    • 2
  • Shaomin Yang
    • 2
  • Ruilin Du
    • 2
  • Linlin Ge
    • 3
  • Qi Wang
    • 2
  1. 1.Institute of GeophysicsChina Earthquake AdministrationBeijingChina
  2. 2.Institute of SeismologyChina Earthquake AdministrationWuhanChina
  3. 3.School of Surveying and Spatial Information SystemsThe University of New South WalesSydneyAustralia

Personalised recommendations