Pure and Applied Geophysics

, Volume 168, Issue 1–2, pp 69–83 | Cite as

Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparison over the Italian Territory



Estimates of seismic hazard obtained using the neo-deterministic approach (NDSHA) and the probabilistic approach (PSHA) are compared for the Italian territory. The NDSHA provides values larger than those given by the PSHA in areas where large earthquakes are observed and in areas identified as prone to large earthquakes, but lower values in low-seismicity areas. These differences suggest the adoption of the flexible, robust and physically sound NDSHA approach to overcome the proven shortcomings of PSHA, thus allowing for a reliable seismic hazard estimation, especially for those areas characterized by a prolonged quiescence, i.e. in tectonically active sites where events of only moderate size have occurred in historical times.


Seismic hazard neo-deterministic method probabilistic method ground motion Italy 


  1. Aki, K. Strong motion seismology. In: Strong ground motion seismology, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol 204 (eds. Erdik, M., and Toksöz, M.) (D. Reidel Publishing Company, Dordrecht 1987), pp 3–39Google Scholar
  2. Aoudia, A., Vaccari, F., Suhadolc, P., Meghraoui, M. (2000), Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria, J Seismol 4, 79–98Google Scholar
  3. Alekseevskaya, M. S., Gabrielov, A. M., Gvishiani, A. D., Gelfand, I. M., Ranzman, E. Ya. (1977), Formal morphostructural zoning of mountain territories, J Geophys 43, 227–233Google Scholar
  4. Bender, B., Perkins, D. M. (1987), SEISRISK III: A computer program for seismic hazard estimation, US Geol Surv Bull 1772, pp 48Google Scholar
  5. Bommer, J. J., Abrahamson, N. A. (2006), Why do modern probabilistic seismic hazard analyses often lead to increased hazard estimates? Bull Seismol Soc Am 96, 1967–1977Google Scholar
  6. Boschi, E., Favalli, P., Frugoni, F., Scalera, G., Smriglio, G., Mappa massima intensità macrosismica risentita in Italia (Istituto Nazionale di Geofisica, Roma 1995) Google Scholar
  7. Cancani, A. (1904), Sur l’emploi d’une double echelle seismique des intesites, empirique et absolue, G Beitr 2, 281–283Google Scholar
  8. Castaños, H., Lomnitz, C. (2002), PSHA: is it science? Eng Geol 66, 315–317Google Scholar
  9. Cornell, C. A. (1968), Engineering seismic risk analysis, Bull Seism Soc Am 58, 1583–1606Google Scholar
  10. D’Amico, V., Albarello, D., Mantovani, E. (1999), A distribution-free analysis of magnitude-intensity relationships: an application to the Mediterranean region, Phys Chem Earth A Solid Earth Geodesy, 24(6), 517–521Google Scholar
  11. Decanini, L. and Mollaioli, F. (1998), Formulation of elastic earthquake input energy spectra, Earthq Eng Struct Dyn 27, 1503–1522Google Scholar
  12. Decanini, L., Mollaioli, F., Panza, G. F., Romanelli, F., Vaccari, F. (2000), Pericolosità sismica della Sicilia Sud Orientale. Terremoti di scenario per Augusta, Siracusa e Noto. L. Decanini e G.F. Panza (A cura di), Scenari di pericolosità sismica ad Augusta, Siracusa e Noto. (CNR- Gruppo Nazionale per la Difesa dai Terremoti- Roma 2000), pp 200, 83–153Google Scholar
  13. Field, E. H., and the SCEC Phase III Working Group (2000), Accounting for site effects in probabilistic seismic hazard analyses of Southern California: overview of the SCEC Phase III Report, Bull Seism Soc Am 90, S1–S31Google Scholar
  14. Gómez,C. A. A. (2006), Seismic hazard map for the Italian territory using macroseismic data, Earth Sci Res J 10, 67–90Google Scholar
  15. Gorshkov, A. I., Panza, G. F., Soloviev, A. A., Aoudia, A. (2002), Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily. JSEE Spring 4(1), 1–24Google Scholar
  16. Gorshkov, A., Kossobokov, V., Soloviev, A., Recognition of earthquake prone areas. In Nonlinear dynamics of the lithosphere and earthquake prediction (eds Keilis-Borok V., Soloviev A.) (Springer, Heidelberg 2003), 235–320Google Scholar
  17. Gorshkov, A. I., Panza, G. F., Soloviev, A. A., Aoudia, A. (2004), Identification of seismogenic nodes in the Alps and Dinarides, Boll Soc Geol It, 123, 3–18Google Scholar
  18. GruppodiLavoro (2004). Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp + 5 enclosuresGoogle Scholar
  19. Gruppodilavoro CPTI (2004). Catalogueo parametrico dei terremoti Italiani, version 2004 (CPTI04), INGV, Bologna. http://emidius.mi.ingv.it/CPTI04/
  20. Gusev, A. A. (1983), Descriptive statistical model of earthquake source radiation and its application to an estimation of short period strong motion, Geophys J R Astron Soc, 74, 787–800Google Scholar
  21. Gusev, A. A., Pavlov, V. (2006), Wideband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique. First European Conference on Earthquake Engineering and Seismology (a joint event of the 13th ECEE & 30th General Assembly of the ESC). Geneva, Switzerland, 3–8 September 2006. Paper Number: 408Google Scholar
  22. Klügel, J. U. (2007a), Comment on “why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates” by Julian J. Bommer and Norman A. Abrahamson, Bull Seism Soc Am, 97, 2198–2207Google Scholar
  23. Klügel, J. U. (2007b), Error inflation in probabilistic seismic hazard analysis, Eng Geol 90, 186–192Google Scholar
  24. Meletti, C., Valensise, G., Zonazione sismogenetica ZS9 – App.2 al Rapporto Conclusivo. In Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. (ed Gruppo di Lavoro MPS) (Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma 2004) 65 pp + 5 enclosuresGoogle Scholar
  25. Mohammadioun, B., State of the art in the calculation of a reference motion for the anti seismic design of critical structures. In Seismic hazard in mediterranean regions, (eds Bonnin, J., Cara, M., Cisternas, A., and Fantechi, R.) (Kluwer Academic Publishers for the Commission of the European Communities, 1988 ECSC, EEC, EAEC, Brussels and Luxembourg 1986), pp 173–193Google Scholar
  26. Molchan, G. M., Kronrod, T. L., Panza, G. F. (1997), Multiscale seismicity model for seismic risk, Bull Seismol Soc Am, 87(5), 1220–1229Google Scholar
  27. OPCM 3274 (20/03/2003) “Primi elementi in materia di criteri generali per la classificazione del territorio nazionale e di normative tecniche” (G.U. n.105 08/05/2003)Google Scholar
  28. OPCM 3519 (28/04/2006) “Criteri generali per l’individuazione delle zone sismiche e per la formazione e l’aggiornamento degli elenchi delle medesime zone” (G.U. n.108 11/05/2006)Google Scholar
  29. Nekrasova, A., and Kossobokov, V. (2005), Unified scaling law for earthquakes: mega-cities and urban agglomerations, Eos Trans. AGU, 86 (52), Fall Meet Suppl, Abstract S23A–0229Google Scholar
  30. Nekrasova, A., Kossobokov V. (2006). General Law of Similarity for Earthquakes: Evidence from the Baikal Region. Doklady Earth Sci, vol 407A(3), pp 484–485Google Scholar
  31. Nekrasova, A., Kossobokov, V., Aoudia, A., Peresan, A., Panza, G. F. (2010). A Multiscale Application of the Unified Scaling Law for Earthquakes in the Central Mediterranean area and Alpine region, Pageoph (This issue)Google Scholar
  32. Norme Tecniche per le costruzioni (D.M. 14/09/2005), published on G.U. 23/09/2005Google Scholar
  33. Panza, G. F., Vaccari, F., Costa, G., Suhadolc, P., Fäh, D. (1996), Seismic input modelling for zoning and microzoning, Earthq Spectra 12, 529–566Google Scholar
  34. Panza, G. F., Vaccari, F., Cazzaro, R. (1997), Correlation between macroseismic intensities and seismic ground motion parameters, Annali Geofisica 15, 1371–1382Google Scholar
  35. Panza, G. F., Romanelli, F., Vaccari, F. (2001), Seismic wave propagation in laterally heterogeneus anelastic media: theory and applications to seismic zonation, Adv Geophys 43, 1–95Google Scholar
  36. Panza, G. F., Alvarez, L., Aoudia, A., Ayadi, A., Benhallou, H., Benouar, D., Bus, Z., Chen, Y., Cioflan, C., Ding, Z., El-Sayed, A., Garcia, J., Garofalo, B., Gorshkov, A., Gribovszki, K., Harbi, A., Hatzidimitriou, P., Herak, M., Kouteva, M., Kuznetzov, I., Lokmer, I., Maouche, S., Marmureanu, G., Matova, M., Natale, M., Nunziata, C., Parvez, I. A., Paskaleva, I., Pico, R., Radulian, M., Soloviev, A., Suhadolc, P., Szeidovitz, G., Triantafyllidis, P., Vaccari, F. (2002), Realistic modeling of seismic input for megacities and large urban areas: the UNESCO/IUGS/IGCP project 414. Episodes, 25(3), 160–184Google Scholar
  37. Panza, G. F., Romanelli, F., Vaccari, F., Decanini, L., Mollaioli, F. (2003). Seismic ground motion modelling and damage earthquake scenarios, a bridge between seismologists and seismic engineers. OECD workshop on the relations between seismological DATA and seismic engineering, Istanbul, 16–18 October 2002, NEA/CSNI/R (2003) 1i8, 241–266Google Scholar
  38. Parvez, I. A., Vaccari, F., Panza, G. F. (2003), A deterministic seismic hazard map of India and adjacent areas, Geophys J Int 155, 489–508Google Scholar
  39. Peresan, A., Zuccolo, E., Vaccari, F., Panza, G. F. (2009) Neo-deterministic seismic hazard scenarios for North-Easter Italy. Boll Soc Geol It 128(1), 229–238Google Scholar
  40. Uang, C. M., Bertero, V. V. (1990) Evaluation of seismic energy in structures, Earthq Eng Struct Dyn 19, 77–90Google Scholar
  41. Vorobieva, I., and Panza, G.F. (1993), Prediction of the occurrence of related strong earthquakes in Italy, Pageoph 141(1), 25–41Google Scholar
  42. Wang, Z. (2008), Understanding seismic hazard and risk: a gap between engineers and seismologists. The 14th world conference on earthquake engineering, October 12–17, 2008, Beijing, China, Paper no. S27-001Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • E. Zuccolo
    • 1
  • F. Vaccari
    • 1
    • 2
  • A. Peresan
    • 1
    • 2
  • G. F. Panza
    • 1
    • 2
  1. 1.Department of GeosciencesUniversity of TriesteTriesteItaly
  2. 2.The Abdus Salam International Centre for Theoretical Physics, ICTPMiramare, TriesteItaly

Personalised recommendations