Pure and Applied Geophysics

, Volume 168, Issue 5, pp 827–844

Crustal Configuration of the Northwest Himalaya Based on Modeling of Gravity Data

  • Ashutosh Chamoli
  • Anand K. Pandey
  • V. P. Dimri
  • P. Banerjee


The gravity response and crustal shortening in the Himalayan belt are modeled in detail for the first time in the NW Himalaya. The Bouguer gravity anomaly along a ~450-km-long (projected) transect from the Sub-Himalaya in the south to the Karakoram fault in the north across the Indus-Tsangpo Suture Zone is modeled using spectral analysis, wavelet transform and forward modeling. The spectral analysis suggests three-layer interfaces in the lithosphere at 68-, 34- and 11-km depths corresponding to the Moho, the Conrad discontinuity and the Himalayan decollement thrust, respectively. The coherence, admittance and cross spectra suggest crustal shortening because of convergence compensated by lithospheric folding at 536- and 178-km wavelength at the Moho and the upper-crustal level. An average effective elastic thickness of around 31 km is calculated using the coherence method. The gravity data are modeled to demarcate intracrustal to subcrustal regional thrust/fault zones. The geometrical constraints of these faults are obtained in the space scale domain using the wavelet transform, showing good correlation with the major tectonic boundaries. The crustal configuration along the transect shows how the Moho depth increases from 45 to 80 km towards the north with the locus of flexure of the Indian crust beneath the Higher Himalayan zone. The combination of forward modeling and wavelet analysis gives insight into the subsurface extent and geometry of regional structures across the NW Himalaya.


Crustal structure spectral analysis gravity anomaly wavelet transform Himalaya 


  1. Arora, B. R., Unsworth, M. J., and Rawat, G. (2007), Deep resistivity structure of the northwest Indian Himalaya and its tectonic implications, Geophys Res Lett 34, L04307(1–4). doi:10.1029/2006GL029165
  2. Banerjee, P. and Satyaprakash, (2003), Crustal configuration in northwestern Himalaya from gravity measurements along Kiratpur-Leh-Panamik Transect, J Geol Soc India 61, 529–539Google Scholar
  3. Bansal, A. R., Dimri, V. P., and Sagar, G. V. (2006), Depth estimation from gravity data using the maximum entropy method (MEM) and the multi taper method (MTM), Pure Appl Geophys 163(7), 1417–1434Google Scholar
  4. Bechtel, T. D., Forsyth, D. W., and Swain, C. J. (1987), Mechanisms of isostatic compensation in the vicinity of the East African Rift, Kenya, Geophys J R Astron Soc 90, 445–465Google Scholar
  5. Bhattacharyya, B. K. (1966), Continuous spectrum of the total-magnetic-field anomaly due to a rectangular prismatic body, Geophysics 31(1), 97–121Google Scholar
  6. Blakely, R. J., Potential Theory in Gravity and Magnetic Applications (Cambridge University Press, New York 1995)Google Scholar
  7. Burg, J. P. (1994), Shortening of analogue models of the continental lithosphere: New hypothesis for the formation of the Tibetan plateau, Tectonics 13, 475–483Google Scholar
  8. Burov, E. B., and Diament, M. (1992), Flexure of the continental lithosphere with multilayered rheology, Geophys J Int 109, 449–468Google Scholar
  9. Burov, E. B., and Diament, M. (1995), The effective elastic thickness (Te) of continental lithosphere: what does it really mean? J Geophys Res 100, 3905–3927Google Scholar
  10. Burov, E. B., and Watts, A. B. (2006), The long-term strength of the continental lithosphere: “jelly sandwich’ or ‘crème brûlée”?, GSA Today 16(1), 4–10Google Scholar
  11. Burov, E. B., Lobkovsky, L. I., Cloetingh, S., and Nikishin, A. M. (1993), Continental lithosphere folding in central Asia, part II,: Constraints from gravity and topography, Tectonophysics 226, 73–87Google Scholar
  12. Caporali, A. (2000), Buckling of the lithosphere in western Himalaya: Constraints from gravity and topography data, J Geophys Res 105, 3103–3113Google Scholar
  13. Cattin, R., Martelet, G., Henry, P., Avouac, J. P., Diament, M., and Shakya, T. R. (2001), Gravity anomalies, crustal structure and thermomechanical support of the Himalaya of Central Nepal, Geophys J Int. 147, 381–392Google Scholar
  14. Chamoli, A., Srivastava, R. P. and Dimri, V. P. (2006), Source depth characterization of potential field data of Bay of Bengal by continuous wavelet transform, Ind J Mar Sci 35(3), 195–204Google Scholar
  15. Dimri, V. P., Deconvolution and inverse theory (Elsevier Science Publishers, Amsterdam 1992)Google Scholar
  16. Duroy, Y., Farah, A., and Lillie, R. J. (1989), Subsurface densities and lithospheric flexure of the Himalayan foreland in Pakistan, In Tectonics of western Himalayas: Geol. Soc. Amer. Sp. Paper, (eds. Malinconico L. L., and Lillie R. J.), vol 132, pp 217–236Google Scholar
  17. Fedi, M., and Quarta, T. (1998), Wavelet analysis for the regional-residual and local separation of potential field anomalies, Geophys Prosp 46, 507–525.Google Scholar
  18. Forsyth, D. W. (1985), Subsurface loading and estimates of the flexural rigidity of continental lithosphere, J Geophys Res 90(B14), 12,623–12,632Google Scholar
  19. Gansser, A., Geology of the Himalayas (John Wiley, London 1964)Google Scholar
  20. Hauck, M. L., Nelson, K. D., Brown, L. D., Zhao, W., and Ross, A. R. (1998), Crustal structure of the Himalaya orogen at ∼90 east longitude from INDEPTH deep reflection profiles, Tectonics 17, 481–500Google Scholar
  21. Hetényi, G, Cattin, R., Vergne, J., and Nábělek, J. L. (2006), The effective elastic thickness of the Indian plate from receiver function imaging, gravity anomalies and thermomechanical modeling, Geophys J Int 167, 1106–1118. doi:10.1111/j.1365-246X.2006.03198.x.
  22. Hornby, P., Boschetti, F., and Horowitz, F. G. (1999), Analysis of potential field data in the wavelet domain, Geophys J Int 137, 175–196Google Scholar
  23. Jin, Y., McNutt, M. K., and Zhu, Y. (1994), Evidence from gravity and topography data for folding of Tibet, Nature 371, 669–674.Google Scholar
  24. Jordan, T. A., and Watts, A. B. (2005), Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collision system, Earth Planet Sci Lett 236, 732–750Google Scholar
  25. Lyon-Caen, H., and Molnar, P. (1983), Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere, J Geophys Res 88, 8171–8191Google Scholar
  26. Lyon-Caen, H., and Molnar, P. (1985), Gravity anomalies, flexure of the Indian plate and the structure, support and evolution of the Himalaya and Ganga Basin, Tectonics 4, 513–538Google Scholar
  27. Macario, A., Malinverno, A., and Haxby, W. F. (1995), On the robustness of the elastic thickness estimates obtained using the coherence method, J Geophys Res 100(B8), 15,163–15,172Google Scholar
  28. Maggi, A., Jackson, J. A., McKenzie, D., and Priestley, K. (2000), Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology 28, 495–498Google Scholar
  29. Martelet, G., Sailhac, P., Moreau, F., and Diament, M. (2001), Characterization of geological boundaries using 1-D wavelet transform on gravity data: Theory and application to the Himalaya, Geophysics 66, 1116–1129Google Scholar
  30. Maus, S., and Dimri, V. P. (1994), Scaling properties of potential fields due to scaling sources, Geophys Res Lett 21, 891–894Google Scholar
  31. Maus, S., and Dimri, V. P. (1995), Potential field power spectrum inversion for scaling geology, J Geophys Res 100, 12605–12616Google Scholar
  32. Maus, S., and Dimri, V. P. (1996), Depth estimation from the scaling power spectrum of potential field?, Geophys J Int 124, 113–120Google Scholar
  33. McKenzie, D., and Fairhead, D. (1997), Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies, J Geophys Res 102, 27523–27552Google Scholar
  34. Moreau, F., Gibert, D., Holschneider, M., and Saracco, G. (1997), Wavelet analysis of potential fields, Inverse Probl 23, 165–178Google Scholar
  35. Moreau, F., Gibert, D., Holschneider, M., and Saracco, G. (1999), Identification of sources of potential fields with continuous wavelet transform: Basic theory, J Geophys Res 104, 5003–5013Google Scholar
  36. Munk, W. H., and Cartwright, D. E. (1966), Tidal spectroscopy and prediction, Philos Trans R Soc Lond Ser A 259, 533–581Google Scholar
  37. Pandey, A. K., Virdi, N. S., and Gairola, V. K. (2003), Evolution of structural fabrics and deformation events in the Kulu-Rampur and Larji Window zones, NW Himalaya, India, Himalayan Geol 24(1), 1–21Google Scholar
  38. Pandey, A. K., Sachan, H. K., and Virdi, N. S. (2004), Exhumation history of a shear zone constrained by microstructural and fluid inclusion techniques: example from the Satluj Valley, NW Himalaya India, J Asian Earth Sci 23, 391–406Google Scholar
  39. Percival, D. B., and Walden, A. T., Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques (Cambridge University Press 1993)Google Scholar
  40. Pilkington, M., Gregotski, M. E., and Todoeschuck, J. P. (1994), Using fractal crust magnetization models in magnetic interpretation, Geophys Prospect 42, 677–692Google Scholar
  41. Powers, P. M., Lillie, R. J., and Yeats, R. S. (1998), Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India, GSA Bull 110(8),1010–1027Google Scholar
  42. Rai, S. S., Priestley, K., Gaur, V. K., Mitra, S., Singh, M. P., and Searle, M. (2006), Configuration of the Indian Moho beneath the NW Himalaya and Ladakh, Geophys Res Lett 33, L15308(1–5). doi:10.1029/2006GL026076.
  43. Ranalli, G., Rheology of the Earth, 2nd edn (Chapman & Hall, London, 1995)Google Scholar
  44. Sailhac, P., Galdeno, A., Gibert, D., and Moreau, F. (2000), Identification of sources of potential fields with the continuous wavelet transform: Complex wavelets and application to aeromagnetic profiles in French Guiana, J Geophys Res 105, 19,455–19,475Google Scholar
  45. Searle, M. P. (1986), Structural evolution and sequence of thrusting in the High Himalayan, Tibetan-Tethys and Indus suture zones of Zanskar and Ladakh, Western Himalaya, J Struct Geol 8, 923–936.Google Scholar
  46. Simons, F. J., van der Hilst, R. D., and Zuber, M. T. (2003), Spatio-spectral localization of isostatic coherence anisotropy in Australia and its relation to seismic anisotropy: Implications for lithospheric deformation, J Geophys Res 108(B5), 2250. doi:10.1029/2001JB000704.
  47. Spector, A., and Grant, F. S. (1970), Statistical models for interpreting aeromagnetic data, Geophysics 35, 293–302Google Scholar
  48. Srikantia, S. V., and Bhargava, O. N., Geology of Himachal Pradesh (Geological Society of India Publications, India 1998)Google Scholar
  49. Thakur, V. C., Geology of Western Himalaya (Pergamon Press, Oxford 1992)Google Scholar
  50. Thakur, V. C., Sriram, V., and Mundepi, A. K. (2000), Seismotectonics of the great 1905 Kangra earthquake meizoseismal region in Kangra–Chamba, NW Himalaya, Tectonophysics 326, 289–298Google Scholar
  51. Tiwari, V. M., Rao, M. B. S. V., Mishra, D. C., and Singh, B. (2006), Crustal structure across Sikkim, NE Himalaya from new gravity and magnetic data, Earth Planet Sci Lett 247, 61–69Google Scholar
  52. Valdiya, K. S. (1980), The two intracrustal boundary thrusts of the Himalaya, Tectonophysics 662, 323–348Google Scholar
  53. Wobus, C. W., Whipple, K. X., and Hodges, K. V. (2006), Neotectonics of the central Nepalese Himalaya: Constrains from geomorphology, detrital 40 Ar/ 39 Ar thermochronology and the thermal modeling, Tectonics 25, TC4011(1–18). doi:10.1029/2005TC001935.
  54. Yeats, R. S., and Thakur, V. C. (1998), Reassessment of earthquake hazard based on a fault-bend fold model of the Himalayan-plate boundary fault, Curr Sci 74, 230–233Google Scholar
  55. Zhao, W., Nelson, K. D., and the Project INDEPTH Team (J. Che, J. Guo, D. Lu, C. Wu, X. Liu, L. D. Brown, M. L. Hauck, J. T. Kuo, S. L. Klemperer, Y. Makovsky) (1993), Deep Seismic-reflection Evidence for Continental Under-thrusting beneath Southern Tibet, Nature 366, 557–559Google Scholar
  56. Zuber, M. (1987), Constraints on the lithospheric structure of venus from mechanical models and tectonic surface features, J Geophys Res 92(B4), E541–E551Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Ashutosh Chamoli
    • 1
  • Anand K. Pandey
    • 1
  • V. P. Dimri
    • 1
  • P. Banerjee
    • 2
  1. 1.National Geophysical Research Institute (Council of Scientific and Industrial Research)HyderabadIndia
  2. 2.Wadia Institute of Himalayan GeologyDehradunIndia

Personalised recommendations