Pure and Applied Geophysics

, Volume 167, Issue 3, pp 277–321 | Cite as

Seismic Empirical Relations for the Tellian Atlas, North Africa, and their Usefulness for Seismic Risk Assessment

  • Noureddine BeghoulEmail author
  • Jean-Luc Chatelain
  • Mohamed-Salah Boughacha
  • Hadj Benhallou
  • Rida Dadou
  • Amira Mezioud-Saïch


Seismic events that occurred during the past half century in the Tellian Atlas, North Africa, are used to establish fundamental seismic empirical relations, tying earthquake magnitude to source parameters (seismic moment, fault plane area, maximal displacement along the fault, and fault plane length). Those empirical relations applied to the overall seismicity from 1716 to present are used to transform the magnitude (or intensity) versus time distribution into (1) cumulative seismic moment versus time, and (2) cumulative displacements versus time. Both of those parameters as well as the computed seismic moment rate, the strain rate along the Tellian Atlas strike, and various other geological observations are consistent with the existence, in the Tellian Atlas, of three distinct active tectonic blocks. These blocks are seismically decoupled from each other, thus allowing consideration of the seismicity as occurring in three different distinct seismotectonic blocks. The cumulative displacement versus time from 1900 to present for each of these tectonic blocks presents a remarkable pattern of recurrence time intervals and precursors associated with major earthquakes. Indeed, most major earthquakes that occurred in these three blocks might have been predicted in time. The Tellian Atlas historical seismicity from the year 881 to the present more substantially confirms these observations, in particular for the western block of the Tellian Atlas. Theoretical determination of recurrence time intervals for the Tellian Atlas large earthquakes using Molnar and Kostrov formalisms is also consistent with these observations. Substantial observations support the fact that the western and central Tellian Atlas are currently at very high seismic risk, in particular the central part. Indeed, most of the accumulated seismic energy in the central Tellian Atlas crust has yet to be released, despite the occurrence of the recent destructive May 2003 Boumerdes earthquake (M w = 6.8). The accumulated seismic energy is equivalent to a magnitude 7.6 earthquake. In situ stress and geodetic measurements, as well as other geophysical field data measurements, are now required to practically check the validity of those observations.


Atlas fault belt system Seismic moment rate Time predictable models Strain rate Fault rupture characteristics Focal mechanisms Molnar, and Kostrov formalisms 



We would like to thank M. Barazangi of Cornell University, Ithaca, New York, USA and an anonymous reviewer who have read our manuscript and brought extremely helpful and useful suggestions that have contributed to significantly enhance the overall structure of this work. We would like to thank Mustapha Meghraoui of IPGP of Strasbourg, France for having very carefully read our manuscript and having brought useful and helpful suggestions. I express my great thanks to H. Benhallou the Chairman of the Institute of Earth Sciences at the University of Sciences and Technology Houari Boumediene for his support and assistance in my initial stage in his Institute after more than twenty-two years abroad. Thanks also to the administrative team of the Institute and my colleagues for their curiosity, their kindness and for the useful and interesting scientific discussions. We thank my students Cheikh Moad and Saïch Boualem for their contributions to the collection of various data from diverse internet sites and catalogues.


  1. Aki, K. (1984), Aspirities, barriers, characteristics earthquakes and strong motion prediction, J. Geophys. Res. 89, 5867–5872.Google Scholar
  2. Aki, K. and Richards, P.G., Quantitative Seismology (W.E. Freeman and Co., San Francisco, USA, 1980).Google Scholar
  3. Ambraseys, N. N., Earthquake damage in the Arab region. in: Assessment and Mitigation of Earthquake Risk in the Arab Region (ed. Uneso, 1983) pp. 11–23.Google Scholar
  4. Anderson, J. G. (1979), Estimating the seismicity from geological structures for seismic risk studies, Bull. Seismol. Soc. Am. 69, 135–158.Google Scholar
  5. Ayadi, A., Contribution à l’étude de l’aléa sismique en Algérie, Master Thesis (University of Sciences and Technology Houari Boumediene, Algiers, Algeria, 1996).Google Scholar
  6. Ayadi, A., Ousadou-Ayadi, F., Bourouis, S., and Benhallou, H. (2002), Seismotectonics and seismic quietness of the Oranie region (Western Algeria): The Mascara earthquake of August 18 th 1994, M w = 5.7, M s = 6.0, J. Seismol. 6, 13–23.Google Scholar
  7. Barazangi, M., A summary of the seismotectonics of the Arab region. In Assessment and Mitigation of Earthquake Risk in the Arab Region (ed. Unesco, 1983) pp. 43–58.Google Scholar
  8. Beauchamp, W. H., Tectonic evolution of the Atlas mountains, North Africa, Ph.D. Thesis (Cornell University, Ithaca, NY, USA, 1998).Google Scholar
  9. Beghoul, N., In situ stress measurements at the east of El-Asnam and devise of a new prototype of strainmeter for earthquake prediction with its automatic central recording, Third Cycle Thesis (University of Paris-South, France, 1984).Google Scholar
  10. Benhallou, H., Ferrer, A., and Rousssel, J., Catalogue des séismes Algériens de 1951 à 1970, (Publication 4, Institut de Météorologie et de Physique du Globe d´Alger, Algiers University, 1971).Google Scholar
  11. Benouar, D. (1994), Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century, Special Issue of Annali di Geosfisica XXXVII 4, 459–860.Google Scholar
  12. Bezzeghoud, M., and Meghraoui, M., Structure et déformation crustale dans le Nord de l’Algérie (research proposal CRAAG, Algiers, Algeria, 1988).Google Scholar
  13. Bezzeghoud, M., Dimitrov, D., Ruegg, J. C., and Lamalli, K. (1995), Faulting mechanism of the 1954 and 1980 earthquakes from vertical movements modelling, Tectonophysics 249, 249–266.Google Scholar
  14. Bezzeghoud, M., Ayadi, A., Sebaï, A., Aït Messaoud, M., Mokrane, A., and Benhallou, H. (1996), Seismicity of Algeria between 1365 and 1989: map of the maximum observed intensities (MOI), Avances en Geofisica y Geodesia I, 107–114.Google Scholar
  15. Boughacha, M-S., French translation of a spanish document written by López Marinas, J. M., and Salord, R. (1990), La période séismique Oranaise de 1790 à la lumière des archives espagnoles (University of Sciences and Technology, Houari Boumediene, Algiers, Algeria, 2001).Google Scholar
  16. Boughacha, M-S, Ouyed, M., Benhallou, H., Djeddi, M., and Hatzfeld, D. (2003), Sismicité en Algérie de 1790 à 2000: Mécanismes au foyers et vitesses de rapprochement inter-plaques, Service Géologique de l’Algérie 14,(2), 65–77.Google Scholar
  17. Boughacha, M-S, Ouyed, M., Guendouz, M., and Benhallou, H. (2003), Le séisme de Ain-Temouchent (Algérie) du 22 Dec. 1999 et la séismicité de la région avoisinante de 1579 à 2000, (in preparation).Google Scholar
  18. Bounif, A., et al. (2004), The 21 May 2003 Zemmouri (Algeria) earthquake M w 6.8: Relocation and aftershock sequence analysis, Geophys. Res. Lett. 31, L19606.Google Scholar
  19. Bounif, A., Haessler, H., and Meghraoui, M. (1987), The Constantine (northeast Algeria) earthquake of October 27, 1985: Surface rupture and aftershock study, Earth Plan. Sci. Lett. 85, 451–460.Google Scholar
  20. Bounif, A., Bezzeghoud, M., Dorbath, M., Legrand, D., Rivera, L., Deschamps, A., Philip, H., and Benhallou, H. (2003), Seismic source study of the 1989 October 29 th , Chenoua (Algeria) earthquake of 1989, from aftershocks, broad-band and strong motion records, Ann. Geophys. 46, 625–646.Google Scholar
  21. Buforn, E., San De Galdeano, C., and Udias, A. (1995), Seismotectonics of the Ibero-Maghrebian region, Tectonophysics 248, 247–261.Google Scholar
  22. Calvert, A. et al. (2000), Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography, J. Geophys. Res. 105, 10871–10898.Google Scholar
  23. Delouis et al. (2004), Slip distribution of the 2003 Boumerdes-Zemmouri earthquake, Algeria, from teleseismic, GPS, and coastal uplift data, Geophys. Res. Lett. 31, L18607.Google Scholar
  24. De Larouzière, F. D., Bolze, J., Bordet, P., Hernandez, J. Montenat, C., and Ott d´Estevou, P. (1988), The Betic segment of the lithospheric Trans-Alboran shear zone during the late Miocene, Tectonophysics 152, 41–52.Google Scholar
  25. Deschamps, A., Gaudemer, Y., and Cisternas, A. (1982), The El-Asnam, Algeria earthquake of 10 th october 1980: Multiple-source mechanism determined from long-period records, Bull. Seismol. Soc. Am. 72, 1111–1128.Google Scholar
  26. Dewey, J., Helman, M., Turco, E., Hutton, D., and Knott, S. (1989), Kinematics of the Western Mediterranean. In Alpine Tectonics (eds. M. Coward, D. Dietrich, R. Park) (Roy. Geolog. Soc., Oxford, UK, 1989) pp. 265–283.Google Scholar
  27. Fabre, J., Geological map of North Africa, scale 1/5 000 000 (SNED, Algiers, Algeria, 1978).Google Scholar
  28. Gomez, F., Beauchamp, W., and Barazangi, M. (2000), Role of the Atlas mountains (northwest Africa) within the African-Eurasian plate boundary zone, Geology 28, 775–778.Google Scholar
  29. Hfaiedh, M., Étude Séismotectonique de la Tunisie Nord-Orientale, Third Cycle Thesis (University of Paris-South, 1984).Google Scholar
  30. Jaumé, S. C. and Sykes, L. (1996), Evolution of moderate seimicity in the San Francisco Bay region, 1850 to 1993: Seimic changes related to the occurrence of large and great earthquakes, J. Geophys. Res. 101, 765–790.Google Scholar
  31. Kanamori, H. and Anderson, D. (1975). Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am. 65, 1073–1095.Google Scholar
  32. King, G., and Vita-Finzi, C. (1981), Active folding in the Algerian earthquake of 10 th October 1980, Nature 292, 22–26.Google Scholar
  33. Kostrov, V. V. (1974), Seismic moment and energy of earthquakes and seismic flow of rocks, Izv. Acad. Sci. USSR, Phys. Solid Earth 1, 23–40.Google Scholar
  34. Lammali, K., Bezzeghoud, M., Oussadou, F., Dimitrov, D., and Benhallou, H. (1977), Postseismic deformation at El-Asnam (Algeria) in the seismotectonic context of northwestern Algeria, Geophys. J. Int. 129, 597–612.Google Scholar
  35. Lay, T., Kanamori, H., and Ruff, L. (1982), The asperity model and the nature of large subduction zone earthquakes, Earthquake Predict. Res. 1, 3–71.Google Scholar
  36. López Marinas, J. M., and Salord, R., The 1790 Oran’s seismic period by the light of the Spanish archives (IGN Publication 6, Madrid, 1990).Google Scholar
  37. Mattauer, M., Tapponnier, P., and Proust, F. (1977), Sur les mécanismes de formation des chaînes intracontinentales. L´exemple des chaînes Atlasiques du Maroc, Bull. Soc. Géol. France 9, 521–526.Google Scholar
  38. McKenzie, D. (1972), Active tectonics of the Mediterranean region, Geophys. J. Roy. Astr. Soc. 30, 109–185.Google Scholar
  39. Meghraoui, M., Géologie des zones séismiques du Nord de l´Algérie. Paléosismologie, tectonique active et synthèse sismotectonique, Ph.D. thesis (Université de Paris-Sud, 1988).Google Scholar
  40. Meghraoui, M., et al. (2004), Crustal uplift and thrust faulting associated with the M w = 6.8 Zemmouri (Algeria) earthquake of 21 st May, 2003, Geophys. Res. Lett. 31, L19605.Google Scholar
  41. Meghraoui, M., Neotectonic study of the north eastern region of El-Asnam. Relation with the October 10 th , 1980 earthquake. Third Cycle Thesis (University of Paris VII, 1982).Google Scholar
  42. Meghraoui M., and Doumaz, E. (1996), Earthquake-induced flooding and paleoseismicity of the El-Asnam (Algeria) fault-related fold, J. Geophys. Res. 101, 17617–17644.Google Scholar
  43. Minster, J. B., and Jordan, T. H. (1978), Present day plate motions, J. Geophys. Res. 83, 5331–5354.Google Scholar
  44. Mokrane, A., Ait-Messaoud, A., Sebai, A., Menia, N., Ayadi, A., and Bezzeghoud, M., Les séismes en Algérie de 1365 à 1992 (Publication of the Research Centre in Astronomy, Astrophysics and Geophysics, CRAAG, Algiers, Algeria, 1994).Google Scholar
  45. Molnar, P. (1979), Earthquake recurrence intervals and plate tectonics, Bull. Seismol. Soc. Am. 69, 115–133.Google Scholar
  46. Ouyed, M., and Meghraoui, M. (1981), Seismotectonics of the El-Asnam earthquake, Nature 292, 26–31.Google Scholar
  47. Ouyed, M., Boughacha, M-S, and Djeddi, M. (2004), Le séisme de Zemmouri (Algérie, Ms = 6.8) du 21 Mai 2003: Résultats préliminaires du choc principal et de sa séquence de répliques, Mém. Serv. Géol. Alg. 12, 11–23.Google Scholar
  48. Philip, H., and Meghraoui, M. (1983), Structural analysis and interpretation of the surface deformation of the El-Asnam earthquake of October 10 th 1980, Tectonics 2, 17–49.Google Scholar
  49. Poirier, J. P., and Taher, M.A. (1980), Historical seismicity in the near and Middle East, North Africa and Spain from Arabic documents (VII –XVIIIth Century), Bull. Seismol. Soc. Am. 70, 2185–2201.Google Scholar
  50. Press, F., and Siever, R., Earth (W. H. Freeman and Co., San Francisco, USA, 1986).Google Scholar
  51. Sebai, A., and Ouahmed, Y., Analyse sismologique des séismes récents du Sahel d’Alger, Master Thesis (University of Sciences and Technology Houari Boumediene, Algiers, Algeria, 1997).Google Scholar
  52. Seber, D., Barazangi, M., Tadili, B., Ramdani, M., Ibenbrahim, A., and Ben Sari, D. (1996), Three-dimensional upper mantle structure beneath the intraplate Atlas and interplate Rif mountains of Morocco, J. Geophys. Res. 101, 3125–3138.Google Scholar
  53. Tapponnier, P. (1977), Évolution tectonique du système Alpin en Méditerranée: Poinçonement et écrasement rigide-plastique, Bull. Soc. Géol. Fr. XIX, 4327–4360.Google Scholar
  54. Udias, A., and Buforn, E. (1991), Regional stresses on the Eurasia Africa plate boundary derived from focal mechanisms of large earthquakes, Pageoph. 136, 433–448.Google Scholar
  55. Yelles et al. (2004), The Aïn Temouchent (Algeria) earthquake of December 22nd, 1999, Pure Appl. Geophys. 161, 607–621.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Noureddine Beghoul
    • 1
    Email author
  • Jean-Luc Chatelain
    • 2
    • 3
  • Mohamed-Salah Boughacha
    • 1
  • Hadj Benhallou
    • 1
  • Rida Dadou
    • 1
  • Amira Mezioud-Saïch
    • 1
  1. 1.Institute of Earth SciencesUniversity of Sciences and Technology Houari BoumedieneAlgiersAlgeria
  2. 2.Laboratoire de Géophysique Interne et Tectonophysique (LGIT)CNRS: UMR5559-IRD: UR157-LCPC-OSUG-INSU-Université de Savoie, Université Joseph FourierGrenoble IFrance
  3. 3.Centre National de Recherche Appliquée en Génie Parasimique (CGS)AlgiersAlgeria

Personalised recommendations