Pure and Applied Geophysics

, Volume 167, Issue 3, pp 349–358 | Cite as

Curie-point Depth from Spectral Analysis of Magnetic Data in Erciyes Stratovolcano (Central TURKEY)



Curie-point depth and heat flow values of the Erciyes region are determined to identify the thermal regime of the Central Anatolia by applying the spectral analysis method to the magnetic anomaly data. To compute the spectrum of the data, the magnetic anomaly of the region is transformed into 2-D Fourier domain to attain the average Curie depth. This method is useful in determining the top boundary of magnetic anomaly sources and reveals the Curie depth as 13.7 km in the study area. The obtained results imply a high thermal gradient (42.3°C km−1) and corresponding heat flow values (88.8 mWm−2) in the research area. Using the temperature value measured at borehole drilled by the General Directorate of Mineral Research and Exploration of Turkey (MTA), the values for the thermal gradient and heat flow value were computed as 50.7°C km−1, 106.5 mWm−2. From the heat flow value, the Curie-point depth was determined as 11.4 km in this region. It is concluded from the obtained values that the region has very high geothermal potential caused by partial melting of the lower crust.


Curie depth heat flow power spectrum erciyes stratovolcano Central Anatolia 



I would like to thank the General Directorate of the Mineral Research and Exploration (MTA) of Turkey for providing aeromagnetic data. We thank anonymous referees for their thorough, critical and constructive comments. The authors are grateful to Brian Mitchell for his editorial advice to enhance the quality of this manuscript.


  1. Ates, A. (1999), Possibility of deep gabbroic rocks, east of Salt Lake, central Turkey, interpreted from aeromagnetic data, J. Balkan Geophys. Soc. 2, 15–29.Google Scholar
  2. Ates, A., Kearey, P., and Tufan, S. (1999), New gravity and magnetic anomaly maps of Turkey, Geophys. J. Int. 136(2), 499–503.Google Scholar
  3. Ates, A., Bilim, F., and Buyuksarac, A. (2005), Curie point depth investigation of Central Anatolian Turkey, Pure Appl. Geophys. 162, 357–371.Google Scholar
  4. Aydar, E. and Gourgaud, A. (1998), The geology of Mount Hasan stratovolcano, central Anatolia, Turkey, J. Volcanol. Geotherm. Res. 85, 129–152.Google Scholar
  5. Aydar, E., Gourgaud, A., Deniel, C., Lyberis N., and Gundogdu, N. (1995), Le volcanisme quaternaire d'Anatolie centrale (Turquie): association de magmatisme calco-alcalin et alcalin en domaine de convergence, Can. J. Earth Sci. 32, 1058–1069.Google Scholar
  6. Aydin, I. and Karat, H.I. (1995), Türkiye Aeromagnetik Haritalarına Genel Bir Bakış, Jeofizik, 9/1–2, 41–44.Google Scholar
  7. Aydin, I., Karat, H.I., and Koçak, A. (2005), Curie-point depth map of Turkey, Geophys. J. Int. 162, 633–640.Google Scholar
  8. Barka, A.A. (1992), The North Anatolian Fault zone, Annales Tecton. 6, 164–195.Google Scholar
  9. Bektas, O., Ravat, D., Buyuksarac, A., Bilim, F., and Ates, A. (2007), Regional geothermal characterization of east anatolia from aeromagnetic, heat flow and gravity data, Pure Appl. Geophys. 164, 975–998.Google Scholar
  10. Bhattacharyya, B.K. and Leu, L.K. (1975), Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures, Geophysics 40, 993–1013.Google Scholar
  11. Bhattacharyya, B.K. and Leu, L.K. (1977), Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies, Geophysics 42, 41–50.Google Scholar
  12. Bigazzi, G., Yegingil, Z., Ercan, T., Oddone, M., and Ozdogan, M. (1993), New data for the chronology of Central and Northern Anatolia by fission track dating of obsidians, Bull. Volcanol. 55, 588–595.Google Scholar
  13. Blakely, R.J. (1988), Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada, J. Geophys. Res. 93, 11817–11832.Google Scholar
  14. Blakely, R.J., Potential Theory and its Applications (Cambridge University Press, New York, 1995).Google Scholar
  15. Bozkurt, E. (2001), Neotectonics of Turkey—a synthesis, Geodinamica Acta 14, 3–30.Google Scholar
  16. Byerly, P.E. and Stolt, R.H. (1977), An attempt to define the Curie point isotherm in northern and central Arizona, Geophysics 42, 1394–1400.Google Scholar
  17. Cianciara, B. and Marcak, H. (1976), Interpretation of gravity anomalies by means of local power spectra, Geophys. Prospecting 24, 273–286.Google Scholar
  18. Connard, G., Couch, R., and Gemperle, M. (1983), Analysis of aeromagnetic measurements from the Cascade range in Central Oregon, Geophysics 48, 376–390.Google Scholar
  19. Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Saroglu, F., and Sengor, A.M.C. (1986), Shortening of continental lithosphere; the neotectonics of eastern Anatolia, a young collision zone. In (Coward, M.P., Ries, A.C., eds.), Collision Tectonics. Imp. Coll., Dep. Geol., Geol. Soc. Spec. Publ., London, UK, 19, pp. 3–36.Google Scholar
  20. Dolmaz, M.N., Hisarli, Z.M., Ustaomer, T., and Orbay, N. (2005), Curie point depths based on spectrum analysis of aeromagnetic data, west Anatolian extensional province, Turkey, Pure Appl. Geophys. 162, 571–590.Google Scholar
  21. Froger, J.L., Lenat, J.F., Chorowicz, J., Le Pennec, J.L., Bourdier, J.L., Kose, O., Zimitoglu, O., Gundogdu, N., and Gourgaud, A. (1998), Hidden calderas evidenced by multisource geophysical data; example of Cappadocian Calderas, Central Anatolia, J. Volcanol. Geotherm. Res. 85, 99–128.Google Scholar
  22. Innocenti, F., Mazzuoli, R., Pasquaré, G., Radicati, F., and Villari, L. (1975), Neogene calc-alcaline volcanism of Central Anatolia: geochronological data on Kayseri-Nigde area, Geol. Mag. 112, 349–360.Google Scholar
  23. Innocenti, F., Manetti, P., Mazzuoli, R., Pasquare, G., and Villari, L. (1982), Anatolia and North-Western Iran. In (Thorpe, R.S. ed.), Andesites: Orogenic Andesites and Related Rocks. The Open Univ., Dept. Earth Sci., Milton Keynes, UK, pp. 327–349.Google Scholar
  24. Kocyigit, A and Beyhan, A. (1998), A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey, Tectonophysics 284, 317–336.Google Scholar
  25. Kurkcuoglu, B, Sen, E., Aydar, E., Gourgaud, A., and Gundogdu, N. (1998), Geochemical approach to magmatic evolution of Mt. Erciyes stratovolcano, Central Anatolia, Turkey, J. Volcanol. Geotherm. Res. 85, 473–494Google Scholar
  26. Le Pennec, J.L., Bourdier, J.L., Froger, J.L., Temel, A., Camus, G., and Gourgaud, A. (1994), Neogene ignimbrite of the Nevsehir Plateau (Central Turkey): stratigraphy, distribution and source constraints, J. Volcanol. Geotherm. Res. 63, 59–87.Google Scholar
  27. McKenzie, D.P. (1972), Active tectonics of the Mediterranean region, Geophys. J. R. Astron. Soc. 30, 109–185.Google Scholar
  28. Mues-Schumacher, U., Schumacher, R., George, L., Viereck-Götte, L.G., and Lepetit, P. (2004), Areal distribution and bulk rock density variations of the welded incesu ignimbrite, Central Anatolia, Turkey, Turkish J. Earth Sci. 13, 249–267.Google Scholar
  29. Notsu, K., Fujitani, T., Ui, T., Matsuda, J., and Ercan, T. (1995), Geochemical features of collision-related volcanic rocks in Central and Eastern Anatolia, Turkey, J. Volcanol. Geotherm. Res. 64, 171–192.Google Scholar
  30. Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K., and Tsu, H. (1985), Curie point depths of the island of Kyushu and surrounding areas, Japanm, Geophysics 50, 481–494.Google Scholar
  31. Okubo, Y., Tsu, H., and Ogawa, K. (1989), Estimation of Curie point temperature and geothermal structure of island arcs of Japan, Tectonophysics 159, 279–290.Google Scholar
  32. Okubo, Y., Makino, M., and Kasuga, S. (1991), Magnetic model of the subduction zone in the Northeast Japan arc, Tectonophysics 192, 103–115.Google Scholar
  33. Ozgur, R, Yurtseven, D., Manav, E., Sarp, S., Yıldırım, T., Yıldırım, N., Ak, S., and Ozkan, H. (2000), Kayseri Erciyes Alanının Jeolojisi Termal Enerji Jeolojisi Jeotermal Enerji Olanakları ve Boğazköprü Araştırma Sondaj Kuyu Bitirme Raporu, MTA Der. Rap. No. 10473, pp. 53 (unpublished), Ankara.Google Scholar
  34. Pasquaré, G., Poli, S., Vezzoli, L., and Zanchi, A. (1988), Continental arc volcanism and tectonic setting in Central Anatolia, Turkey, Tectonophysics 146, 217–230.Google Scholar
  35. Sen, E., Kurkcuoglu, B., Aydar, E., Gourgaud, A., and Vincent, P.M. (2003), Volcanological evolution of Mount Erciyes stratovolcan and origin of the Valibaba Tepe ignimbrite (Central Anatolia, Turkey), J. Volcanol. Geotherm. Res. 125, 225–246.Google Scholar
  36. Sen, P.A., Temel, A., and Gourgaud, A. (2004), Petrogenetic modelling of quaternary post-collisional volcanism: a case study of central and eastern Anatolia, Geol. Mag. 141, 81–98.Google Scholar
  37. Sengor, A.M.C., Gorur, N., and Saroglu, F. (1985), Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In (Biddle K.T., Christie-Blick N., eds.), Strike-slip Faulting and Basin Formation, Soc. Econ. Paleontol. Mineral. Sp. Pub. 37, pp. 227–264.Google Scholar
  38. Shuey, R.T., Schellinger, D.K., Tripp, A.C., and Alley, L.B. (1977), Curie depth determination from aeromagnetic spectra, Geophys. J. R. Astron. Soc. 50, 75–101.Google Scholar
  39. Spector, A. and Grant, F.S. (1970), Statistical models for interpreting aeromagnetic data, Geophysics 35, 293–302.Google Scholar
  40. Stampolidis, A. and Tsokas, G.N. (2002), Curie point depths of Macedonia and Thrace, N Greece, Pure Appl. Geophys. 159, 2659–2671.Google Scholar
  41. Stampolidis, A., Kane, I., Tsokas, G.N., and Tsourlo, P. (2005), Curie point depths of Albania inferred from ground total field magnetic data, Surv Geophys. 26, 461–480.Google Scholar
  42. Tanaka, A., Okubo, Y., and Matsubayashi, O. (1999), Curie-point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics 306, 461–470.Google Scholar
  43. Tezcan, A.K., Geothermal studies, their present status and contribution to heat flow contouring in Turkey. In (Cermak, V., Rybach, L. eds.), Terrestrial Heat Flow in Europe (Springer, Berlin, 1979) pp. 283–291.Google Scholar
  44. Toprak, V. (1998), Vent distribution and its relation to regional tectonics, Cappadocian volcanics, Turkey, J. Volcanol. Geotherm. Res. 85, 55–67Google Scholar
  45. Tsokas, G.N., Hansen, R.O., and Fytikas, M. (1998), Curie point depth of the island of Crete (Greece), Pure Appl. Geophys. 152, 747–757.Google Scholar
  46. Turcotte, D.L. and Schubert, G., Geodynamics Applications of Continuum Physics to Geologic Problems (Wiley, New York, 1982), p 450.Google Scholar
  47. Yamano, M., Recent heat flow studies in and around Japan. In (Gupta, M.L., Yamano, M., eds.), Terrestrial Heat Flow and Geothermal Energy in Asia (A.A. Balkema, Rotterdam, 1995), pp. 173–201.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of GeophysicsGümüşhane UniversityGümüşhaneTürkiye

Personalised recommendations