Advertisement

Equilibrium States in Thermal Field Theory and in Algebraic Quantum Field Theory

Abstract

We compare the construction of equilibrium states at finite temperature for self-interacting massive scalar quantum field theories on Minkowski spacetime proposed by Fredenhagen and Lindner (Commun Math Phys 332:895, 2014) with results obtained in ordinary thermal field theory, by means of real-time and Matsubara (or imaginary time) formalisms. In the construction of this state, even if the adiabatic limit is considered, the interaction Lagrangian is multiplied by a smooth time cut-off. In this way the interaction starts adiabatically and the correlation functions are free from divergences. The corresponding interaction Hamiltonian is a local interacting field smeared over the interval of time where the chosen cut-off is not constant. We observe that, in order to cope with this smearing, the Matsubara propagator, which is used to expand the relative partition function between the free and interacting equilibrium states, needs to be modified. We thus obtain an expansion of the correlation functions of the equilibrium state for the interacting field as a sum over certain type of graphs with mixed edges, some of them correspond to modified Matsubara propagators and others to propagators of the real-time formalism. An integration over the adiabatic time cut-off is present in every vertex. However, at every order in perturbation theory, the final result does not depend on the particular form of the cut-off function. The obtained graphical expansion contains in it both the real-time formalism and the Matsubara formalism as particular cases. For special interaction Lagrangians, the real-time formalism is recovered in the limit where the adiabatic start of the interaction occurs at past infinity. At least formally, the combinatorics of the Matsubara formalism is obtained in the limit where the switch on is realised with an Heaviside step function and the field observables have no time dependence. Finally, we show that a particular factorisation which is used to derive the ordinary real-time formalism holds only in special cases and we present a counterexample. We conclude with the analysis of certain correlation functions, and we notice that corrections to the self-energy in a \(\lambda \phi ^4\) at finite temperature theory are expected.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

Notes

  1. 1.

    In the following we shall use the following convention regarding the Fourier transform: \(B({\mathbf {x}})=\frac{1}{(2\pi )^3}\int {d}^3{\mathbf {p}}{\hat{B}}({\mathbf {p}})^{-i{\mathbf {p}}\cdot {\mathbf {x}}}\), \({\hat{B}}({\mathbf {k}})=\int B({\mathbf {x}})e^{i{\mathbf {p}}\cdot {\mathbf {x}}}\).

References

  1. 1.

    Altherr, T.: Infrared problem in \(g\phi ^4\) theory at finite temperature. Phys. Lett. B 238, 360 (1990)

  2. 2.

    Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS Kyoto Univ. 9(1), 165–209 (1973)

  3. 3.

    Bratteli, O., Kishimoto, A., Robinson, D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61, 209–238 (1978)

  4. 4.

    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. Springer, Berlin (1987)

  5. 5.

    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin (1997)

  6. 6.

    Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541 (2009)

  7. 7.

    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

  8. 8.

    Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)

  9. 9.

    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003)

  10. 10.

    Calzetta, E., Hu, B.L.: Nonequilibrium quantum fields: closed-time-path effective action, Wigner function, and Boltzmann equation. Phys. Rev. D 37, 2878–2900 (1988)

  11. 11.

    Carrington, M.E., Mrowczynski, S.: Transport theory beyond binary collisions. Phys. Rev. D 71, 065007 (2005)

  12. 12.

    Chilian, B., Fredenhagen, K.: The time-slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513–522 (2009)

  13. 13.

    Dappiaggi, C., Drago, N.: Constructing Hadamard states via an extended Møller operator. Lett. Math. Phys. 106(11), 1587–1615 (2016)

  14. 14.

    Drago, N.: Thermal State with Quadratic Interaction. Ann. Henri Poincaré 20, 905–927 (2019)

  15. 15.

    Drago, N., Gèrard, C.: On the adiabatic limit of Hadamard states. Lett. Math. Phys. 107, 1409 (2017)

  16. 16.

    Drago, N., Faldino, F., Pinamonti, N.: On the stability of KMS states in perturbative algebraic quantum field theories. Commun. Math. Phys. 357, 267–293 (2018)

  17. 17.

    Drago, N., Faldino, F., Pinamonti, N.: Relative entropy and entropy production for equilibrium states in pAQFT. Ann. Henri Poincaré 19, 3289 (2018)

  18. 18.

    Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. Ann. Henri. Poincaré 18, 807–868 (2017)

  19. 19.

    Duetsch, M., Fredenhagen, K., Keller, K.J., Rejzner, K.: Dimensional regularization in position space and a Forest Formula for Epstein–Glaser renormalization. J. Math. Phys. 55, 122303 (2014)

  20. 20.

    Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. Henri Poincaré Section A XIX(3), 211 (1973)

  21. 21.

    Fredenhagen, K., Lindner, F.: Construction of KMS states in perturbative QFT and renormalized hamiltonian dynamics. Commun. Math. Phys. 332, 895 (2014)

  22. 22.

    Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. In: Calaque, D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories. Mathematical Physics Studies. Springer, Cham (2015)

  23. 23.

    Fulling, S.A., Ruusenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)

  24. 24.

    Hollands, S., Wald, R.M.: Local Wick polynomials and time-ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289 (2001)

  25. 25.

    Hollands, S., Wald, R.M.: Existence of local covariant time-ordered products of quantum fields in curved space-time. Commun. Math. Phys. 231, 309 (2002)

  26. 26.

    Hollands, S., Wald, R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005)

  27. 27.

    Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (2003)

  28. 28.

    Kajantie, K. (ed.): Quark Matter ’84. Springer, Berlin (1985)

  29. 29.

    Kapusta, J.I., Gale, C.: Finite-Temperature Field Theory—Principles and Applications. Cambdridge University Press, Cambdridge (2006)

  30. 30.

    Keldysh, L.V.: Diagram technique for nonequilibrium processes. JETP 20, 1018 (1965)

  31. 31.

    Landsman, N.P., van Weert, C.G.: Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)

  32. 32.

    Le Bellac, M.: Thermal Field Theory. Cambridge University Press, Cambridge (2000)

  33. 33.

    Lindner, F.: Perturbative Algebraic Quantum Field Theory at Finite Temperature. Ph.D. thesis, University of Hamburg (2013)

  34. 34.

    Matsubara, T.: A new approach to quantum-statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)

  35. 35.

    McLerran, L.D.: Eleven lectures on the Physics of the Quark-Gluon Plasma (FNAL/C–84/101-T) (1985)

  36. 36.

    Niemi, A.J., Semenoff, G.W.: Finite-temperature quantum field theory in Minkowski space. Ann. Phys. 152, 105–129 (1984)

  37. 37.

    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83 (1973)

  38. 38.

    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. 2. Commun. Math. Phys. 42, 281 (1975)

  39. 39.

    Parwani, R.R.: Resummation in a hot scalar field theory. Phys. Rev. D 45, 4695 (1992)

  40. 40.

    Prokopec, T., Schmidt, M.G., Weinstock, S.: Transport equations for chiral fermions to order h bar and electroweak baryogenesis. Part 1. Ann. Phys. 314, 208–265 (2004)

  41. 41.

    Prokopec, T., Schmidt, M.G., Weinstock, S.: Transport equations for chiral fermions to order h-bar and electroweak baryogenesis. Part II. Ann. Phys. 314, 267–320 (2004)

  42. 42.

    Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

  43. 43.

    Schwinger, J.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407 (1961)

  44. 44.

    Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory. Lecture Notes in Physics, vol. 11. Springer, Berlin (1971)

  45. 45.

    Umezawa, H., Matsumoto, H., Tachiki, M.: Thermo Field Dynamics and Condensed States. North-Holland, Amsterdam (1982)

  46. 46.

    Umezawa, H.: Advanced Field Theory. American Institute of Physics, New York (1993)

  47. 47.

    van Hove, L.: In: de Boer, J., Dal, E., Ulfbeck, O. (eds.) The Lesson of Quantum Theory. North-Holland, Amsterdam (1986)

Download references

Acknowledgements

The work of J. Braga de Góes Vasconcellos is supported in part by the National Group of Mathematical Physics (GNFM—INdAM).

Author information

Correspondence to Nicola Pinamonti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Karl-Henning Rehren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braga de Góes Vasconcellos, J., Drago, N. & Pinamonti, N. Equilibrium States in Thermal Field Theory and in Algebraic Quantum Field Theory. Ann. Henri Poincaré 21, 1–43 (2020). https://doi.org/10.1007/s00023-019-00859-3

Download citation