Advertisement

Friedrichs Extension and Min–Max Principle for Operators with a Gap

  • Lukas SchimmerEmail author
  • Jan Philip Solovej
  • Sabiha Tokus
Original Paper
  • 79 Downloads

Abstract

Semibounded symmetric operators have a distinguished self-adjoint extension, the Friedrichs extension. The eigenvalues of the Friedrichs extension are given by a variational principle that involves only the domain of the symmetric operator. Although Dirac operators describing relativistic particles are not semibounded, the Dirac operator with Coulomb potential is known to have a distinguished extension. Similarly, for Dirac-type operators on manifolds with a boundary a distinguished self-adjoint extension is characterised by the Atiyah–Patodi–Singer boundary condition. In this paper, we relate these extensions to a generalisation of the Friedrichs extension to the setting of operators satisfying a gap condition. In addition, we prove, in the general setting, that the eigenvalues of this extension are also given by a variational principle that involves only the domain of the symmetric operator. We also clarify what we believe to be inaccuracies in the existing literature.

Mathematics Subject Classification

49R05 49S05 47B25 81Q10 

Notes

References

  1. 1.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77, 43 (1975)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balinsky, A.A., Evans, W.D.: Spectral Analysis of Relativistic Operators. Imperial College Press, London (2011)zbMATHGoogle Scholar
  3. 3.
    Birman, M.S., Solomjak, M.Z.: Spectral Theory of Selfadjoint Operators in Hilbert Space. Translated from the 1980 Russian original by S. Khrush and V. Peller. Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co, Dordrecht (1987)Google Scholar
  4. 4.
    Brasche, J.G., Neidhardt, H.: Some remarks on Kreĭn’s extension theory. Math. Nachr. 165, 159–181 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brown, G.E., Ravenhall, D.G.: On the interaction of two electrons. Proc. Roy. Soc. Lond. Ser. A. 208, 552–559 (1951)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Datta, S.N., Deviah, G.: The minimax technique in relativistic Hartree–Fock calculations. Pramana 30(5), 387–405 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    Davies, E.B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  8. 8.
    Deckert, D.A., Oelker, M.: Distinguished self-adjoint extension of the two-body Dirac operator with Coulomb interaction. Ann. Henri Poincaré 20(7), 2407–2445 (2019)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dolbeault, J., Esteban, M.J., Loss, M., Vega, L.: An analytical proof of Hardy-like inequalities related to the Dirac operator. J. Funct. Anal. 216(1), 1–21 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dolbeault, J., Esteban, M.J., Séré, E.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174, 208–226 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Douglas, R.G., Wojciechowski, K.P.: Adiabatic limit of the \(\eta \)-invariants. The odd-dimensional Atiyah–Patodi–Singer problem. Commun. Math. Phys. 142, 139–168 (1991)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Esteban, M.J., Lewin, M., Séré, E.: Domains for Dirac-Coulomb min-max levels. Rev. Mat. Iberoam. 35(3), 877–924 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Esteban, M.J., Loss, M.: Self-adjointness for Dirac operators via Hardy–Dirac inequalities. J. Math. Phys. 48(11), 112107 (2007)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Esteban, M.J., Loss, M.: Self-adjointness via partial Hardy-like inequalities. In: Mathematical Results in Quantum Mechanics, pp. 41–47. World Scientific Publication, Hackensack (2008)Google Scholar
  15. 15.
    Evans, L.C.: Partial differential equations, second edition. In: Graduate Studies in Mathematics, Vol. 19. American Mathematical Society, Providence RIGoogle Scholar
  16. 16.
    Furutani, K.: Atiyah–Patodi–Singer boundary condition and a splitting formula of a spectral flow. J. Geom. Phys. 56, 310–321 (2006)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. Math. Ann. 109(1), 465–487 (1934)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gallone, M., Michelangeli, A.: Self-adjoint realisations of the Dirac–Coulomb Hamiltonian for heavy nuclei. Anal. Math. Phys. 9(1), 585–616 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gallone, M., Michelangeli, A.: Discrete spectra for critical Dirac–Coulomb Hamiltonians. J. Math. Phys. 59(6), 062108 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Griesemer, M., Siedentop, H.: A minimax principle for the eigenvalues in spectral gaps. J. Lond. Math. Soc. (2) 60(2), 490–500 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Klaus, M., Wüst, R.: Characterization and uniqueness of distinguished selfadjoint extensions of Dirac operators. Commun. Math. Phys. 64(2), 171–176 (1978/1979)Google Scholar
  22. 22.
    Kraus, M., Langer, M., Tretter, C.: Variational principles and eigenvalue estimates for unbounded block operator matrices and applications. J. Comput. Appl. Math. 171(1–2), 311–334 (2004)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Krein, M.G.: The theory of self-adjoint extensions of semibounded Hermitian operators and its applications. I. Mat. Sbornik 20(3), 431–495 (1947). (in Russian) zbMATHGoogle Scholar
  24. 24.
    Krejčířik, D., Lu, Z.: Location of the essential spectrum in curved quantum layers. J. Math. Phys. 55(8), 083520 (2014)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Morozov, S., Müller, D.: On the minimax principle for Coulomb–Dirac operators. Math. Z. 280, 733–747 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Müller, D.: Minimax principles, Hardy–Dirac inequalities and operator cores for two and three dimensional Coulomb–Dirac operators. Doc. Math. 21, 1151–1169 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Nenciu, G.: Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Commun. Math. Phys. 48(3), 235–247 (1976)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. In: Functional Analysis. Academic Press, New York (1972)CrossRefGoogle Scholar
  29. 29.
    Reed, M., Simon, B.: Methods of modern mathematical physics. II. In: Fourier Analysis, Self-adjointness. Academic Press, New York (1975)Google Scholar
  30. 30.
    Schmincke, U.-W.: Essential selfadjointness of Dirac operators with a strongly singular potential. Math. Z. 126, 71–81 (1972)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Talman, J.D.: Minimax principle for the Dirac equation. Phys. Rev. Lett. 57(9), 1091–1094 (1986)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Tix, C.: Self-adjointness and spectral properties of a pseudo-relativistic Hamiltonian due to Brown and Ravenhall. Preprint, mp-arc, pp. 97–441 (1997)Google Scholar
  33. 33.
    Tretter, C.: Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London (2008)CrossRefGoogle Scholar
  34. 34.
    Wüst, R.: Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials. Math. Z. 141, 93–98 (1975)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wüst, R.: Dirac operations with strongly singular potentials. Distinguished self-adjoint extensions constructed with a spectral gap theorem and cut-off potentials. Math. Z. 152(3), 259–271 (1977)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.QMATH Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations