Advertisement

Smoothness of Correlation Functions in Liouville Conformal Field Theory

  • Joona OikarinenEmail author
Open Access
Article
  • 19 Downloads

Abstract

We prove smoothness of the correlation functions in probabilistic Liouville Conformal Field Theory. Our result is a step towards proving that the correlation functions satisfy the higher Ward identities and the higher BPZ equations, predicted by the Conformal Bootstrap approach to Conformal Field Theory.

Notes

References

  1. 1.
    Baverez, G.: Modular bootstrap agrees with path integral in the large moduli limit. arXiv:1805.09766
  2. 2.
    Baverez, G., Wong, M.D.: Fusion asymptotics for Liouville correlation functions. arXiv:1807.10207
  3. 3.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benoit, L., Saint-Aubin, Y.: Degenerate conformal field theories and explicit expressions for some null vectors. Phys. Lett. B 215(3), 517–522 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 27, 1–12 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342, 869–907 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Renormalizability of Liouville Quantum Gravity at the Seiberg bound. Electron. J. Probab. 22, paper no. 93, 26 pp (2017)Google Scholar
  8. 8.
    Gawedzki, K.: Lectures on conformal field theory. In: Quantum fields and strings: a course for mathematicians, Vols. 1, 2 (Princeton, NJ, 1996/1997), pp. 727–805. Amer. Math. Soc., Providence (1999)Google Scholar
  9. 9.
    Guillarmou, C., Rhodes, R., Vargas, V.: Polyakov’s formulation of \(2d\) bosonic string theory (2017). arXiv:1607.08467 [math-ph]
  10. 10.
    Huang, Y.: Path integral approach to analytic continuation of Liouville theory: the pencil region. arXiv:1809.08650
  11. 11.
    Huang, Y., Rhodes, R., Vargas, V.: Liouville Quantum Gravity on the unit disk. Ann. Inst. H. Poincare Probab. Stat. 54(3), 1694–1730 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kupiainen, A., Rhodes, R., Vargas, V.: Local Conformal Structure of Liouville Quantum Gravity. Commun. Math. Phys. (2018).  https://doi.org/10.1007/s00220-018-3260-3
  14. 14.
    Kupiainen, A., Rhodes, R., Vargas, V.: Integrability of Liouville theory: proof of the DOZZ Formula. arXiv:1707.08785
  15. 15.
    Kupiainen, A., Rhodes, R., Vargas, V.: The DOZZ formula from the path integral. High Energy Phys. 2018, 94 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kupiainen, A.: Constructive Liouville Conformal Field Theory. arXiv:1611.05243
  17. 17.
    Nakayama, Y.: Liouville Field Theory—A decade after the revolution. Int. J. Mod. Phys. A 19, 2771 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. 103B, 207 (1981)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Remy, G.: The Fyodorov-Bouchaud formula and Liouville conformal field theory. arXiv:1710.06897
  20. 20.
    Remy, G., Zhu, T.: The distribution of Gaussian multiplicative chaos on the unit interval. arXiv:1804.02942
  21. 21.
    Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rhodes, R., Vargas, V.: Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity. arXiv:1602.07323
  23. 23.
    Ribault, S.: Conformal field theory on the plane. arXiv:1406.4290
  24. 24.
    Takhtajan, L., Teo, L.: Quantum Liouville Theory in the background field formalism I. Compact Riemann surfaces. Commun. Math. Phys. 268, 135 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Takhtajan, L., Zograf, P.: Hyperbolic 2-spheres with conical singularities, accessory parameters and Kahler metrics on \({{\cal{M}}}_{0, n}\). Trans. Am. Math. Soc. 355(5), 1857 (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    Teschner, J.: Liouville theory revisited. Class. Quant. Grav. 18, R153–R222 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vargas, V.: Lecture notes on Liouville theory and the DOZZ formula. arXiv:1712.00829

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations