Skip to main content
Log in

Resolvent Convergence to Dirac Operators on Planar Domains

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Consider a Dirac operator defined on the whole plane with a mass term of size m supported outside a domain \(\Omega \). We give a simple proof for the norm resolvent convergence, as m goes to infinity, of this operator to a Dirac operator defined on \(\Omega \) with infinite-mass boundary conditions. The result is valid for bounded and unbounded domains and gives estimates on the speed of convergence. Moreover, the method easily extends when adding external matrix-valued potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berry, M.V., Mondragon, R.J.: Neutrino billiards: time-reversal symmetry-breaking without magnetic fields. Proc. R. Soc. Lond. Ser. A 412(1842), 53–74 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  2. Stockmeyer, E., Vugalter, S.: Infinite mass boundary conditions for Dirac operators. J. Spectr. Theory (2018). https://doi.org/10.4171/JST/256

    Google Scholar 

  3. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  4. Armitage, N.P., Mele, E.J., Vishwanath, A.: Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90(1), 015001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Akhmerov, A.R., Beenakker, C.W.J.: Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008)

    Article  ADS  Google Scholar 

  6. Hunt, B., Sanchez-Yamagishi, J.D., Young, A.F., Yankowitz, M., LeRoy, B.J., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P., et al.: Massive Dirac fermions and Hofstadter butterfly in a Van der Waals heterostructure. Science 340(6139), 1427–1430 (2013)

    Article  ADS  Google Scholar 

  7. Lu, J., Watson, A.B., Weinstein, M.I.: Dirac operators and domain walls (2018). arXiv:1808.01378

  8. Barbaroux, J.-M., Cornean, H., Stockmeyer, E.: Spectral gaps in graphene antidot lattices. Integr. Equ. Oper. Theory 89(4), 631–646 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Raedt, H., Katsnelson, M.I.: Electron energy level statistics in graphene quantum dots. JETP Lett. 88(9), 607–610 (2009)

    Article  Google Scholar 

  10. Brun, S.J., Pereira, V.M., Pedersen, T.G.: Boron and nitrogen doping in graphene antidot lattices. Phys. Rev. B 93(24), 245420 (2016)

    Article  ADS  Google Scholar 

  11. Brun, S.J., Thomsen, M.R., Pedersen, T.G.: Electronic and optical properties of graphene antidot lattices: comparison of Dirac and tight-binding models. J. Phys.: Cond. Matter 26(26), 265301 (2014)

    Google Scholar 

  12. Leoni, G.: A First Course in Sobolev Spaces. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  13. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  14. Benguria, R.D., Fournais, S., Stockmeyer, E., Van Den Bosch, H.: Self-adjointness of two-dimensional Dirac operators on domains. Ann. Henri Poincaré 18(4), 1371–1383 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Benguria, R.D., Fournais, S., Stockmeyer, E., Van Den Bosch, H.: Spectral gaps of Dirac operators describing graphene quantum dots. Math. Phys. Anal. Geom. 20(2), 11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Borrelli, W.: Multiple solutions for a self-consistent Dirac equation in two dimensions. J. Math. Phys. 59(4), 041503 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Le Treust, L., Ourmières-Bonafos, T.: Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors. Ann. Henri Poincaré 19(5), 1465–1487 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Bogolioubov, P.N.: Sur un modèle à quarks quasi-indépendants. Ann. l’I.H.P., Sect. A 8, 163–189 (1968)

    Google Scholar 

  19. Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B.: Baryon structure in the bag theory. Phys. Rev. D 10, 2599–2604 (1974)

    Article  ADS  Google Scholar 

  20. Arrizabalaga, N., Le Treust, L., Mas, A., Raymond, N.: The MIT bag model as an infinite mass limit (2018). arXiv:1808.09746

  21. Arrizabalaga, N., Le Treust, L., Raymond, N.: On the MIT bag model in the non-relativistic limit. Commun. Math. Phys. 354(2), 641–669 (2017). (to appear)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Arrizabalaga, N., Le Treust, L., Raymond, N.: Extension operator for the MIT bag model. Ann. la Fac. Sci. Toulouse Math. (2018)

  23. de Oliveira, C.R.: Intermediate Spectral Theory and Quantum Dynamics. Birkhauser, Basel (2008)

    Google Scholar 

  24. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics, study edn. Springer, Berlin (1987)

    MATH  Google Scholar 

  25. Weidmann, J.: Lineare Operatoren in Hilberträumen, Volume of Mathematische Leitfäden. Teubner, Stuttgart (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Barbaroux.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbaroux, JM., Cornean, H., Le Treust, L. et al. Resolvent Convergence to Dirac Operators on Planar Domains. Ann. Henri Poincaré 20, 1877–1891 (2019). https://doi.org/10.1007/s00023-019-00787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00787-2

Mathematics Subject Classification

Navigation