Advertisement

Spin Conductance and Spin Conductivity in Topological Insulators: Analysis of Kubo-Like Terms

  • Giovanna Marcelli
  • Gianluca PanatiEmail author
  • Clément Tauber
Article
  • 13 Downloads

Abstract

We investigate spin transport in 2-dimensional insulators, with the long-term goal of establishing whether any of the transport coefficients corresponds to the Fu–Kane–Mele index which characterizes 2d time-reversal-symmetric topological insulators. Inspired by the Kubo theory of charge transport, and by using a proper definition of the spin current operator (Shi et al. in Phys Rev Lett 96:076604, 2006), we define the Kubo-like spin conductance \({G_K^{s_z}}\) and spin conductivity \({\sigma _K^{s_z}}\). We prove that for any gapped, periodic, near-sighted discrete Hamiltonian, the above quantities are mathematically well defined and the equality \({G_K^{s_z} = \sigma _K^{s_z}}\) holds true. Moreover, we argue that the physically relevant condition to obtain the equality above is the vanishing of the mesoscopic average of the spin-torque response, which holds true under our hypotheses on the Hamiltonian operator. A central role in the proof is played by the trace per unit volume and by two generalizations of the trace, the principal value trace and its directional version.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are indebted to Gian Michele Graf for sharing with us his insight into the mathematics of the QHE on the occasion of the Winter School “The Mathematics of Topological Insulators in Naples”, organized in the framework of the Cond-Math project (http://www.cond-math.it/), and for pointing out to us some relevant references. We are grateful to Domenico Monaco and Stefan Teufel for many useful discussions, and to Massimo Moscolari for a careful reading of the manuscript.

References

  1. 1.
    An, Z., Liu, F.Q., Lin, Y., Liu, C.: The universal definition of spin current. Sci. Rep. 2, 388 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Ando, Y.: Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A Math. Gen. 31, 6783 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aizenman, M., Warzel, S.: Random Operators. Graduate Studies in Mathematics, vol. 168. American Mathematical Society, Providence (2015)CrossRefzbMATHGoogle Scholar
  5. 5.
    Avila, J.C., Schulz-Baldes, H., Villegas-Blas, C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16, 136–170 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Avron, J.E., Seiler, R.: Quantization of the Hall conductance for general, multiparticle Schrödinger Hamiltonians. Phys. Rev. Lett. 54, 259–262 (1985)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Avron, J., Seiler, R., Simon, B.: Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bouclet, J.M., Germinet, F., Klein, A., Schenker, J.H.: Linear response theory for magnetic Schrödinger operators in disordered media. J. Funct. Anal. 226, 301–372 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bray-Ali, N., Nussinov, Z.: Conservation and persistence of spin currents and their relation to the Lieb–Schulz–Mattis twist operators. Phys. Rev. B 80, 012401 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Carpentier, D., Delplace, P., Fruchart, M., Gawedzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114, 106806 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carpentier, D., Delplace, P., Fruchart, M., Gawedzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Cornean, H.D., Monaco, D., Teufel, S.: Wannier functions and \(\mathbb{Z}_2\) invariants in time-reversal symmetric topological insulators. Rev. Math. Phys. 29, 1730001 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Elgart, A., Graf, G.M., Schenker, J.H.: Equality of the bulk and edge Hall conductances in a mobility gap. Commun. Math. Phys. 259, 185–221 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Elgart, A., Schlein, B.: Adiabatic charge transport and the Kubo formula for Landau-type Hamiltonians. Commun. Pure Appl. Math. 57, 590–615 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fiorenza, D., Monaco, D., Panati, G.: \(\mathbb{Z}_{2}\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115–1157 (2016)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Fröhlich, J., Werner, P.: Gauge theory of topological phases of matter. EPL 101, 47007 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Fu, L., Kane, C.L.: Time reversal polarization and a \({\mathbb{Z}}_2\) adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Fu, L., Kane, C.L., Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Gawedzki, K.: Square root of gerbe holonomy and invariants of time-reversal-symmetric topological insulators. J. Geom. Phys. 120, 169–191 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Graf, G.M.: Aspects of the integer quantum Hall effect. Proc. Symp. Pure Math. 76, 429–442 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851–895 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Haldane, F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2017 (1988)ADSMathSciNetGoogle Scholar
  24. 24.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Kane, C.L., Mele, E.J.: \({\mathbb{Z}}_2\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Katsura, H., Koma, T.: The \(\mathbb{Z}_2\) index of disordered topological insulators with time reversal symmetry. J. Math. Phys. 57, 021903 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kirsch, W.: An Invitation to Random Schrödinger Operators, Preprint arXiv:0709.3707
  29. 29.
    Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Kohn, W.: Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76, 3168 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Marcelli, G.: A mathematical analysis of spin and charge transport in topological insulators, Ph.D. thesis in Mathematics, La Sapienza Universitá di Roma, Rome (2017)Google Scholar
  32. 32.
    Marcelli, G., Monaco, D., Panati, G., Teufel, S.: Quantum (Spin) Hall Conductivity: Kubo Formula (and beyond), to appear (2019)Google Scholar
  33. 33.
    Marcelli, G., Panati, G., Tauber, C.: Quantum Spin Hall conductance: a first principle analysis, in preparation (2019)Google Scholar
  34. 34.
    Monaco, D., Panati, G.: Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry. Acta Appl. Math. 137, 185–203 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Monaco, D., Tauber, C.: Gauge-theoretic invariants for topological insulators: a bridge between Berry, Wess–Zumino, and Fu–Kane–Mele. Lett. Math. Phys. 107, 1315–1343 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Moore, J.E., Balents, L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Murakami, S.: Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 97, 236805 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Panati, G.: Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Prodan, E., Kohn, W.: Nearsightedness of electronic matter. Proc. Natl. Acad. Sci. USA 102, 11635–11638 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Prodan, E.: Robustness of the spin-Chern number. Phys. Rev. B 80, 125327 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Prodan, E.: Manifestly gauge-independent formulations of the \(\mathbb{Z}_2\) invariants. Phys. Rev. B 83, 235115 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1979)zbMATHGoogle Scholar
  43. 43.
    Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Schulz-Baldes, H.: Persistence of spin edge currents in disordered quantum spin Hall systems. Commun. Math. Phys. 324, 589–600 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Schulz-Baldes, H.: \(\mathbb{Z}_2\)-indices and factorization properties of odd symmetric Fredholm operators. Doc. Math. 20, 1481–1500 (2015)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Shi, J., Zhang, P., Xiao, D., Niu, Q.: Proper definition of spin current in spin-orbit coupled systems. Phys. Rev. Lett. 96, 076604 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Simon, B.: Trace Ideals and Their Applications. American Mathematical Society, Providence (2005)zbMATHGoogle Scholar
  48. 48.
    Sun, Q.F., Xie, X.C., Wang, J.: Persistent spin current in nano-devices and definition of the spin current. Phys. Rev. B 77, 035327 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    Thouless, D.J., Kohmoto, M., Nightingale, M.P., de Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)ADSCrossRefGoogle Scholar
  50. 50.
    Wu, S., et al.: Observation of the quantum spin Hall effect up to \(100\) Kelvin in a monolayer crystal. Science 359, 76–79 (2018)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Zhang, P., Wang, Z., Shi, J., Xiao, D., Niu, Q.: Theory of conserved spin current and its application to a two-dimensional hole gas. Phys. Rev. B 77, 075304 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica“La Sapienza” Università di RomaRomeItaly
  2. 2.Fachbereich MathematikEberhard Karls Universität TübingenTübingenGermany
  3. 3.Institute for Theoretical PhysicsETH ZürichZurichSwitzerland

Personalised recommendations