Abstract
For many completely positive maps repeated compositions will eventually become entanglement breaking. To quantify this behaviour we develop a technique based on the Schmidt number: If a completely positive map breaks the entanglement with respect to any qubit ancilla, then applying it to part of a bipartite quantum state will result in a Schmidt number bounded away from the maximum possible value. Iterating this result puts a successively decreasing upper bound on the Schmidt number arising in this way from compositions of such a map. By applying this technique to completely positive maps in dimension three that are also completely copositive we prove the so-called PPT squared conjecture in this dimension. We then give more examples of completely positive maps where our technique can be applied, e.g. maps close to the completely depolarizing map, and maps of low rank. Finally, we study the PPT squared conjecture in more detail, establishing equivalent conjectures related to other parts of quantum information theory, and we prove the conjecture for Gaussian quantum channels.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank Daniel Cariello for pointing out how his results [26, 27] together with the techniques from [22] imply Corollary 3.5. We also thank Ion Nechita for pointing out the different version of Theorem A.1. MC and AMH acknowledge financial support from the European Research Council (ERC Grant Agreement no 337603) and VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). MW acknowledges the hospitality of the QMATH Centre.
References
- 1.Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(06), 629–641 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)CrossRefADSGoogle Scholar
- 3.Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from bound entanglement. Phys. Rev. Lett. 94(16), 160502 (2005)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 4.Lami, L., Giovannetti, V.: Entanglement-breaking indices. J. Math. Phys. 56(9), 092201 (2015)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 5.De Pasquale, A., Giovannetti, V.: Quantifying the noise of a quantum channel by noise addition. Phys. Rev. A 86(5), 052302 (2012)CrossRefADSGoogle Scholar
- 6.De Pasquale, A., Mari, A., Porzio, A., Giovannetti, V.: Amendable Gaussian channels: restoring entanglement via a unitary filter. Phys. Rev. A 87(6), 062307 (2013)CrossRefADSGoogle Scholar
- 7.Lami, L., Giovannetti, V.: Entanglement-saving channels. J. Math. Phys. 57(3), 032201 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 8.Christandl, M.: PPT square conjecture. In: Banff International Research Station Workshop: Operator Structures in Quantum Information Theory (2012)Google Scholar
- 9.Bäuml, S., Christandl, M., Horodecki, K., Winter, A.: Limitations on quantum key repeaters. Nat. Commun. 6, 6908 (2015)CrossRefADSGoogle Scholar
- 10.Christandl, M., Ferrara, R.: Private states, quantum data hiding, and the swapping of perfect secrecy. Phys. Rev. Lett. 119(22), 220506 (2017)CrossRefADSGoogle Scholar
- 11.Kennedy, M., Manor, N.A., Paulsen, V.I.: Composition of PPT maps. Quantum Inf. Comput. 18(5 & 6), 0472–0480 (2018)MathSciNetGoogle Scholar
- 12.Rahaman, M., Jaques, S., Paulsen, V.I.: Eventually entanglement breaking maps. J. Math. Phys. 59(6), 062201 (2018)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 13.Terhal, B.M., Horodecki, P.: Schmidt number for density matrices. Phys. Rev. A 61(4), 040301 (2000)MathSciNetCrossRefADSGoogle Scholar
- 14.Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Skowronek, Ł., Størmer, E., Życzkowski, K.: Cones of positive maps and their duality relations. J. Math. Phys. 50(6), 062106 (2009)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 16.Chruściński, D., Kossakowski, A.: On partially entanglement breaking channels. Open Syst. Inf. Dyn. 13(1), 17–26 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Woronowicz, S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10(2), 165–183 (1976)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 18.Tang, W.-S.: On positive linear maps between matrix algebras. Linear Algebra Appl. 79, 33–44 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(5), 333–339 (1997)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 20.Sanpera, A., Bruß, D., Lewenstein, M.: Schmidt-number witnesses and bound entanglement. Phys. Rev. A 63(5), 050301 (2001)CrossRefADSGoogle Scholar
- 21.Yang, Y., Leung, D.H., Tang, W.-S.: All 2-positive linear maps from M3(C) to M3(C) are decomposable. Linear Algebra Appl. 503, 233–247 (2016)MathSciNetCrossRefGoogle Scholar
- 22.Huber, M., Lami, L., Lancien, C., Müller-Hermes, A.: High-dimensional entanglement in states with positive partial transposition. Phys. Rev. Lett. 121, 200503 (2018)CrossRefADSGoogle Scholar
- 23.Gurvits, L., Barnum, H.: Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A 66(6), 062311 (2002)CrossRefADSGoogle Scholar
- 24.Johnston, N.: Separability from spectrum for qubit–qudit states. Phys. Rev. A 88(6), 062330 (2013)CrossRefADSGoogle Scholar
- 25.Lami, L., Huber, M.: Bipartite depolarizing maps. J. Math. Phys. 57(9), 092201 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 26.Cariello, D.: Separability for weakly irreducible matrices. Quantum Inf. Comput. 14(15–16), 1308–1337 (2014)MathSciNetGoogle Scholar
- 27.Cariello, D.: Does symmetry imply PPT property? Quantum Inf. Comput. 15(9–10), 812–824 (2015)MathSciNetGoogle Scholar
- 28.Heinosaari, T., Jivulescu, M.A., Reeb, D., Wolf, M.M.: Extending quantum operations. J. Math. Phys. 53(10), 102208 (2012)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 29.Moravčíková, L., Ziman, M.: Entanglement-annihilating and entanglement-breaking channels. J. Phys. A Math. Theor. 43(27), 275306 (2010)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 30.Müller-Hermes, A., Reeb, D., Wolf, M.M.: Positivity of linear maps under tensor powers. J. Math. Phys. 57(1), 015202 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 31.Filippov, S.N., Rybár, T., Ziman, M.: Local two-qubit entanglement-annihilating channels. Phys. Rev. A 85(1), 012303 (2012)CrossRefADSGoogle Scholar
- 32.Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 33.Størmer, E.: Duality of cones of positive maps. Preprint arXiv:0810.4253 (2008)
- 34.Müller-Hermes, A.: Decomposability of linear maps under tensor powers. J. Math. Phys. 59(10), 102203 (2018)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 35.Collins, B., Yin, Z., Zhong, P.: The PPT square conjecture holds generically for some classes of independent states. J. Phys. A Math. Theor. 51(42), 425301 (2018)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 36.Vollbrecht, K.G.H., Wolf, M.M.: Activating distillation with an infinitesimal amount of bound entanglement. Phys. Rev. Lett. 88(24), 247901 (2002)CrossRefADSGoogle Scholar
- 37.Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001)CrossRefADSGoogle Scholar
- 38.Audenaert, K., Eisert, J., Jané, E., Plenio, M., Virmani, S., De Moor, B.: Asymptotic relative entropy of entanglement. Phys. Rev. Lett. 87(21), 217902 (2001)CrossRefADSGoogle Scholar
- 39.Christandl, M., Schuch, N., Winter, A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311(2), 397–422 (2012)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 40.Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 41.Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction, vol. 16. Walter de Gruyter, Berlin (2013)zbMATHGoogle Scholar
- 42.Chen, L., Yang, Y., Tang, W.-S.: Schmidt number of bipartite and multipartite states under local projections. Quantum Inf. Process. 16(3), 75 (2017)MathSciNetCrossRefzbMATHADSGoogle Scholar
- 43.Kraus, B., Cirac, J., Karnas, S., Lewenstein, M.: Separability in \(2\times \) N composite quantum systems. Phys. Rev. A 61(6), 062302 (2000)MathSciNetCrossRefADSGoogle Scholar