Probability Distributions of Multi-species q-TAZRP and ASEP as Double Cosets of Parabolic Subgroups

  • Jeffrey KuanEmail author


We write explicit contour integral formulas for probability distributions of the multi-species q-TAZRP and the multi-species ASEP starting with q-exchangeable initial conditions. The formulas are equal to the corresponding explicit contour integral formulas for the single-species q-TAZRP (Korhonen and Lee in J Math Phys 55:013301, 2014. arXiv:1308.4769v2, Wang and Waugh in SIGMA 12:037, 2016. arXiv:1512.01612v5) and ASEP (Tracy and Widom in Integral formulas for the asymmetric simple exclusion process, 2007. arXiv:0704.2633), with a factor in front of the integral. For the multi-species q-TAZRP, we use a decomposition theorem for elements of double cosets of parabolic subgroups in a Coxeter group. The set of distinguished double coset representatives with minimal length is viewed as a particle configuration. For the multi-species ASEP, we use a more direct proof.

Mathematics Subject Classification

Primary 05E15 Secondary 60C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Andjel, E.D.: Invariant measures for the zero range process. Ann. Probab. 10, 525–547 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    Arita, C.: Remarks on the multi-species exclusion process with reflective boundaries. J. Phys. A Math. Theor. (2012).
  4. 4.
    Belitsky, V., Schütz, G.M.: Self-duality and shock dynamics in the \(n\)-component priority ASEP. arXiv:1606.04587v1
  5. 5.
    Billey, S., Konvalinka, M., Petersen, T., Slofstra, W., Tenner, B.: Parabolic double cosets in Coxeter groups. Electron. J. Comb. arXiv:1612.00736v2
  6. 6.
    Carter, R.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Wiley, New York (1985)zbMATHGoogle Scholar
  7. 7.
    Curtis, C.W.: On Lusztig’s isomorphism theorem for Hecke algebras. J. Algebra 92, 348–365 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Garsia, A.M., Stanton, D.: Group actions on Stanley–Reisner rings and invariants of permutation groups. Adv. Math. 51(2), 107–201 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gnedin, A., Olshanski, G.: A q-analogue of de Finetti’s theorem. Electron. J. Comb. 16(1), 78 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gnedin, A., Olshanski, G.: q-Exchangeability via quasi-invariance. Ann. Probab. 38(6), 2103–2135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jones, A.: A combinatorial approach to the double cosets of the symmetric group with respect to young subgroups. Eur. J. Comb. 17(7), 647–655 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kuan, J.: A Multi-species ASEP(q,j) and q-TAZRP with stochastic duality. Int. Mat. Res. Not. arXiv:1605.00691v1
  13. 13.
    Kuan, J.: An algebraic construction of duality functions for the stochastic \(U_q(A_n^{(1)})\) vertex model and its degenerations. Commun. Math. Phys. arXiv:1701.04468v2
  14. 14.
    Korhonen, M., Lee, E.: The transition probability and the probability for the left-most particle’s position of the q–TAZRP. J. Math. Phys. 55, 013301 (2014). arXiv:1308.4769v2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liggett, T.M.: Coupling the simple exclusion process. Ann. Probab. 4, 339–356 (1976). MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A. 31(28), 6057–6071 (1998). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Solomon, L.: A Mackey formula in the group ring of a Coxeter group. J. Algebra 41, 255–268 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Takeyama, Y.: Algebraic construction of multi-species q-Boson system. arXiv:1507.02033
  20. 20.
    Tits, J.: Groupes et géométries de Coxeter, mimeographed notes, Institut des Hautes Études Scientifiques (1961)Google Scholar
  21. 21.
    Tits, J.: Buildings of spherical type and finite BN-Pairs. Lecture Notes in Mathematics, No. 386, Springer, Berlin (1974)Google Scholar
  22. 22.
    Tracy, C., Widom, H.: Integral formulas for the asymmetric simple exclusion process. arXiv:0704.2633
  23. 23.
    Tracy, C., Widom, H.: On the distribution of a second class particle in the asymmetric simple exclusion process. arXiv:0907.4395
  24. 24.
    Tracy, C., Widom, H.: On the asymmetric simple exclusion process with multiple species, arXiv:1105.4906
  25. 25.
    Wang, D., Waugh, D.: The transition probability of the q-TAZRP (q-Bosons) with inhomogeneous jump rates. SIGMA 12, 037 (2016). arXiv:1512.01612v5

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College StationUSA

Personalised recommendations