Advertisement

Annales Henri Poincaré

, Volume 20, Issue 1, pp 1–62 | Cite as

The Small Field Parabolic Flow for Bosonic Many-body Models: Part 1—Main Results and Algebra

  • Tadeusz Balaban
  • Joel Feldman
  • Horst KnörrerEmail author
  • Eugene Trubowitz
Article
  • 13 Downloads

Abstract

This paper is a contribution to a program to see symmetry breaking in a weakly interacting many-Boson system on a three-dimensional lattice at low temperature. It is part of an analysis of the “small field” approximation to the “parabolic flow” which exhibits the formation of a “Mexican hat” potential well. Here we state the main result of this analysis, outline the strategy of the proof, which uses a renormalization group flow, and perform the first, algebraic, part of a renormalization group step.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of Quantum Field Theory in Statistical Physics. Dover Publications, New York (1963)zbMATHGoogle Scholar
  2. 2.
    Balaban, T.: The ultraviolet stability bounds for some lattice \(\sigma \)—models and lattice Higgs–Kibble models. In: Proceedings of the International Conference on Mathematical Physics, Lausanne, 1979, pp. 237–240. Springer (1980)Google Scholar
  3. 3.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: A functional integral representation for many boson systems I: the partition function. Ann. Henri Poincaré 9, 1229–1273 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: A functional integral representation for many boson systems II: correlation functions. Ann. Henri Poincaré 9, 1275–1307 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Power series representations for complex bosonic effective actions. I. A small field renormalization group step. J. Math. Phys. 51, 053305 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Power series representations for complex bosonic effective actions. II. A small field renormalization group flow. J. Math. Phys. 51, 053306 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: The temporal ultraviolet limit for complex bosonic many-body models. Ann. Henri Poincaré 11, 151–350 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: The temporal ultraviolet limit. In: Quantum Theory from Small to Large Scales, Ecole de Physique des Houches, 2010, pp. 99–170. Oxford University Press (2012)Google Scholar
  9. 9.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Complex bosonic many-body models: overview of the small field parabolic flow. Ann. Henri Poincaré 18, 2873–2903 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Operators for parabolic block spin transformations. Preprint (2016)Google Scholar
  11. 11.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Power series representations for complex bosonic effective actions. III. Substitution and fixed point equations. Preprint (2016)Google Scholar
  12. 12.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: The algebra of block spin renormalization group transformations. Preprint (2016)Google Scholar
  13. 13.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: The small field parabolic flow for bosonic many-body models: part 2—Fluctuation integral and renormalization. Ann. Henri Poincaré (2019) (to appear)Google Scholar
  14. 14.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: The small field parabolic flow for bosonic many-body models: Part 3—Nonperturbatively small errors. Preprint (2016)Google Scholar
  15. 15.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: The small field parabolic flow for bosonic many-body models: Part 4—Background and critical field estimates. Preprint (2016)Google Scholar
  16. 16.
    Benfatto, G.: Renormalization group approach to zero temperature bose condensation. In: Constructive Physics. Springer Lecture Notes in Physics 446, pp. 219–247. Springer (1995)Google Scholar
  17. 17.
    Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. (USSR) 11, 23–32 (1947)MathSciNetGoogle Scholar
  18. 18.
    Cenatiempo, S., Boccato, C., Brennecke, C., Schlein, B.: Bogoliubov theory in the Gross–Pitaevskii limit. Preprint (2018)Google Scholar
  19. 19.
    Cenatiempo, S., Boccato, C., Brennecke, C., Schlein, B.: Complete Bose–Einstein condensation in the Gross–Pitaevskii regime. Commun. Math. Phys. 359, 975–1026 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cenatiempo, S., Giuliani, A.: Renormalization theory of a two dimensional Bose gas: quantum critical point and quasi-condensed state. J. Stat. Phys. 157, 755–829 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Coleman, S.: Secret symmetry. An introduction to spontaneous symmetry breakdown and gauge fields. In: Laws of Hadronic Matter, pp. 138–215. Academic Press (1975)Google Scholar
  22. 22.
    Dereziński, J., Napiorkowski, M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 15, 2409–2439 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Seiringer, R., Lieb, E.H., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Birkhäuser, Basel (2005)zbMATHGoogle Scholar
  24. 24.
    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)Google Scholar
  25. 25.
    Merola, I., Benfatto, G., Cassandro, M., Presussi, E.: Limit theorems for statistics of combinatorial partitions with applications to mean field bose gas. J. Math. Phys. 46, 033303 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gawȩdzki, K., Kupiainen, A.: A rigorous block spin approach to massless lattice theories. Commun. Math. Phys. 77, 31–64 (1980)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Gawȩdzki, K., Kupiainen, A.: Massless lattice \(\varphi ^4_4\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 197–252 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 332, 559–591 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kadanoff, L.P.: Scaling laws for Ising models near \(T_c\). Physics 2, 263 (1966)CrossRefGoogle Scholar
  30. 30.
    Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 99, 170409 (2002)CrossRefGoogle Scholar
  31. 31.
    Serfaty, S., Lewin, M., Nam, P.T., Solovej, J.P.: Bogoliubov spectrum of interacting bose gases. Commun. Pure Appl. Math. 68, 413–471 (2014)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Negele, J.W., Orland, H.: Quantum Many-Particle Systems. Addison-Wesley, Reading, MA (1988)zbMATHGoogle Scholar
  33. 33.
    Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. Clarendon Press, Oxford (2003)zbMATHGoogle Scholar
  34. 34.
    Seiringer, R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Seiringer, R.: Cold quantum gases and Bose–Einstein condensation. In: Quantum Theory from Small to Large Scales, Ecole de Physique des Houches, 2010, pp. 429–466. Oxford University Press (2012)Google Scholar
  36. 36.
    Weinberg, S.: The Quantum Theory of Fields. Modern Applications, vol. II. Cambridge University Press, Cambridge (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tadeusz Balaban
    • 1
  • Joel Feldman
    • 2
  • Horst Knörrer
    • 3
    Email author
  • Eugene Trubowitz
    • 3
  1. 1.Department of MathematicsRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  3. 3.MathematikETH-ZürichZurichSwitzerland

Personalised recommendations