Annales Henri Poincaré

, Volume 20, Issue 1, pp 259–298 | Cite as

Mod-Gaussian Convergence for Random Determinants

  • Martina Dal BorgoEmail author
  • Emma Hovhannisyan
  • Alain Rouault


The aim of this paper is to give a precise asymptotic description of some eigenvalue statistics stemming from random matrix theory. More precisely, we consider random determinants of the GUE, GOE, Laguerre, uniform Gram and Jacobi beta ensembles and random characteristic polynomials evaluated at 1 for matrices in the circular and circular Jacobi beta ensembles. We use the framework of mod-Gaussian convergence to provide quantitative estimates of their logarithmic behavior, as the size of the ensemble grows to infinity. We establish central limit theorems, Berry–Esseen bounds, moderate deviations and local limit theorems. Furthermore, we identify the scale at which the validity of the Gaussian approximation for the tails breaks. With the exception of the Gaussian ensemble, all the results are obtained for a continuous choice of the Dyson parameter, that is, for general \(\beta >0\). The proofs rely on explicit computations which are possible thanks to closed product formulas of the Laplace transforms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, J., Mulders, T.: How tight is Hadamard bound? Exp. Math. 10(3), 331–336 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bai, Z.D., Silverstein, J.W.: CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32(1A), 553–605 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barnes, E.W.: The theory of the G-function. Q. J. Pure Appl. Math. 31, 264–314 (1900)zbMATHGoogle Scholar
  4. 4.
    Bartlett, M.: On the theory of statistical regression. Proc. R. Soc. Edinb. 53, 260–283 (1934)CrossRefzbMATHGoogle Scholar
  5. 5.
    Borot, G., Eynard, B., Majumdar, S., Nadal, C.: Large deviations of the maximal eigenvalue of random matrices. J. Stat. Mech. Theory Exp. 2011(11), P11024 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourgade, P., Hughes, C.P., Nikeghbali, A., Yor, M.: The characteristic polynomial of a random unitary matrix: a probabilistic approach. Duke Math. J. 145(1), 45–69, 10 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bourgade, P., Nikeghbali, A., Rouault, A.: The characteristic polynomial on compact groups with Haar measure: some equalities in law. C. R. Math. Acad. Sci. Paris 345(4), 229–232 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bourgade, P., Nikeghbali, A., Rouault, A.: Circular Jacobi ensembles and deformed Verblunsky coefficients. Int. Math. Res. Not. IMRN 2009(23), 4357–4394 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dal Borgo, M., Méliot, P.-L., Nikeghbali, A.: Local limit theorems and mod-\(\phi \) convergence. ArXiv e-prints, October (2017)Google Scholar
  10. 10.
    Delannay, R., Le Caër, G.: Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble. Phys. Rev. E 62, 1526–36 (2000)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Delbaen, F., Kowalski, E., Nikeghbali, A.: Mod-\(\phi \) convergence. Int. Math. Res. Not. IMRN 11, 3445–3485 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Döring, H., Eichelsbacher, P.: Moderate deviations for the determinant of Wigner matrices. In: Eichelsbacher, P., Elsner, G., Kösters, H., Löwe, M., Merkl, F., Rolles, S. (eds.) Limit Theorems in Probability, Statistics and Number Theory. Springer Proceedings in Mathematics & Statistics, vol. 42, pp. 253–275. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Edelman, A., La Croix, M.: The singular values of the GUE (less is more). Random Matrices Theory Appl. 4(04), 1550021 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ehrhardt, T., Silbermann, B.: Toeplitz determinants with one Fisher–Hartwig singularity. J. Funct. Anal. 148(1), 229–256 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I. Robert E. Krieger Publishing Co., Inc, Melbourne (1981). (Based on notes left by H. Bateman, With a preface by M. Rees, With a foreword by E. C. Watson, Reprint of the 1953 original) zbMATHGoogle Scholar
  17. 17.
    Féray, V., Méliot, P.L., Nikeghbali, A.: Mod-\(\phi \) Convergence. SpringerBriefs in Probability and Mathematical Statistics, 1st edn. Springer, Cham (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Féray, V., Méliot, P.L., Nikeghbali, A.: Mod-\(\phi \) convergence II : estimates of the speed of convergence. arxiv:1705.1085, May (2017)
  19. 19.
    Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs Series, vol. 34. Princeton University Press, Princeton, NJ (2010)zbMATHGoogle Scholar
  20. 20.
    Fyodorov, Y., Keating, J.: Freezing transitions and extreme values: random matrix theory, and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372, 20120503, 32 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Fyodorov, Y.V., Khoruzhenko, B.A., Simm, N.J.: Fractional Brownian motion with Hurst index \(H = 0\) and the Gaussian unitary ensemble. Ann. Probab. 44(4), 2980–3031 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gupta, A.K., Nagar, D.K.: Matrix Variate Distributions. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 104. Chapman & Hall/CRC, Boca Raton, FL (2000)zbMATHGoogle Scholar
  23. 23.
    Hughes, C.P., Keating, J.P., O’Connell, N.: On the characteristic polynomial of a random unitary matrix. Commun. Math. Phys. 220(2), 429–451 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jacod, J., Kowalski, E., Nikeghbali, A.: Mod-Gaussian convergence: new limit theorems in probability and number theory. Forum Math. 23(4), 835–873 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jonsson, D.: Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12(1), 1–38 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta (1/2+it)\). Commun. Math. Phys. 214(1), 57–89 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 50, 2665–2701 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kowalski, E., Nikeghbali, A.: Mod-Gaussian convergence and the value distribution of \(\zeta (\frac{1}{2}+it)\) and related quantities. J. Lond. Math. Soc. (2) 86(1), 291–319 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Krasovsky, I.: Correlations of characteristic polynomials in the GUE or a singular Hankel determinant. Duke Math. J. 139(3), 581–619 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lambert, G., Ostrovsky, D., Simm, N.: Subcritical multiplicative chaos for regularized counting statistics from random matrix theory. arXiv:1612.02367v2 (2018)
  31. 31.
    Mathai, A.M.: A Handbook of Generalized Special Functions for Statistical and Physical Sciences. Oxford University Press, New York (1993)zbMATHGoogle Scholar
  32. 32.
    Mathai, A.M.: Jacobians of Matrix Transformations and Functions of Matrix Argument. World Scientific Publishing Co., Inc., River Edge, NJ (1997)CrossRefzbMATHGoogle Scholar
  33. 33.
    Mehta, M.L.: Random Matrices. Pure and Applied Mathematics (Amsterdam), vol. 142, 3rd edn. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  34. 34.
    Mehta, M.L., Normand, J.-M.: Probability density of the determinant of a random Hermitian matrix. J. Phys. A 31(23), 5377 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Najnudel, J., Nikeghbali, A., Rouault, A.: Limit theorems for orthogonal polynomials related to circular ensembles. J. Theor. Probab. 29(4), 1199–1239 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Olver, F.W.J.: Asymptotics and special functions. AKP Classics. A K Peters Ltd, Wellesley, MA (1997). (Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]) CrossRefzbMATHGoogle Scholar
  37. 37.
    Rouault, A.: Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles. ALEA Lat. Am. J. Probab. Math. Stat. 3, 181–230 (2007)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill Book Co., New York (1976)zbMATHGoogle Scholar
  39. 39.
    Su, Z.: Circular \(\beta \) ensembles, CMV representation, characteristic polynomials. Sci. China Ser. A Math. 52(7), 1467–1477 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Szekeres, G., Turán, P.: On an extremal problem in the theory of determinants. Math. Naturwiss. Am. Ungar. Akad. Wiss 56, 796–806 (1937)zbMATHGoogle Scholar
  41. 41.
    Tao, T., Vu, V.: A central limit theorem for the determinant of a Wigner matrix. Adv. Math. 231(1), 74–101 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Temme, N.: Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153(1–2), 441–462 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Webb, C.: The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos—the \(L^2\)-phase. Electron. J. Probab. 20(104), 21 (2015)zbMATHGoogle Scholar
  44. 44.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996). (Reprint of the fourth (1927) edition) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Martina Dal Borgo
    • 1
    Email author
  • Emma Hovhannisyan
    • 1
  • Alain Rouault
    • 2
  1. 1.University of ZurichZürichSwitzerland
  2. 2.Laboratoire de Mathématiques de Versailles UVSQ, CNRSUniversité Paris-SaclayVersailles CedexFrance

Personalised recommendations