Advertisement

Annales Henri Poincaré

, Volume 20, Issue 2, pp 631–674 | Cite as

Control of Fluctuations and Heavy Tails for Heat Variation in the Two-Time Measurement Framework

  • Tristan Benoist
  • Annalisa PanatiEmail author
  • Renaud Raquépas
Article

Abstract

We study heat fluctuations in the two-time measurement framework. For bounded perturbations, we give sufficient ultraviolet regularity conditions on the perturbation for the moments of the heat variation to be uniformly bounded in time, and for the Fourier transform of the heat variation distribution to be analytic and uniformly bounded in time in a complex neighborhood of 0. On a set of canonical examples, with bounded and unbounded perturbations, we show that our ultraviolet conditions are essentially necessary. If the form factor of the perturbation does not meet our assumptions, the heat variation distribution exhibits heavy tails. The tails can be as heavy as preventing the existence of a fourth moment of the heat variation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrieux, D., Gaspard, P., Monnai, T., Tasaki, S.: The fluctuation theorem for currents in open quantum systems. New J. Phys. 11(4), 043014 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Arai, A.: On a model of a harmonic oscillator coupled to a quantized, massless, scalar field. I. J. Math. Phys. 22(11), 2539–2548 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Araki, H., Woods, E.J.: Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas. J. Math. Phys. 4(5), 637–662 (1963)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Araki, H., Wyss, W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37(2), 136 (1964)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Benoist, T., Fraas, M., Jakšić, V., Pillet, C.-A.: Full statistics of erasure processes: isothermal adiabatic theory and a statistical Landauer principle. Revue Roum. Math. Pures Appl. 62(1), 259–286 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Benoist, T., Jakšić, V., Panati, A., Pautrat, Y., Pillet, C.-A.: Full statistics of energy conservation in two-time measurement protocols. Phys. Rev. E 92(3), 032115 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Benoist, T., Jakšić, V., Pillet, C.-A.: Energy statistics in open harmonic networks. J. Stat. Phys. 168(5), 1016–1030 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benoist, T., Panati, A., Pautrat, Y.: Heat conservation and fluctuation relations for open quantum systems (2018). ArXiv preprint arXiv:1810.09999
  9. 9.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Campisi, M., Blattmann, R., Kohler, S., Zueco, D., Hänggi, P.: Employing circuit QED to measure non-equilibrium work fluctuations. New J. Phys. 15(10), 105028 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Campisi, M., Hänggi, P., Talkner, P.: Colloquium: Quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83(3), 771 (2011)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Chernoff, P.R., Marsden, J.E.: Some basic properties of infinite dimensional Hamiltonian systems. Colloques internationaux CNRS, Géométrie symplectique et physique mathématique 237, 313–330 (1976)Google Scholar
  14. 14.
    Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Davies, E.B.: The harmonic oscillator in a heat bath. Commun. Math. Phys. 33(3), 171–186 (1973)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Dorner, R., Clark, S., Heaney, L., Fazio, R., Goold, J., Vedral, V.: Extracting quantum work statistics and fluctuation theorems by single-qubit interferometry. Phys. Rev. Lett. 110(23), 230601 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Dereziński, J.: Van Hove Hamiltonians–exactly solvable models of the infrared and ultraviolet problem. Ann. Henri Poincaré 4(4), 713–738 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dereziński, J.: Introduction to representations of the canonical commutation and anticommutation relations. In: Dereziński, J., Siedentop, H. (eds.) Large Coulomb Systems. Lecture Notes in Physics, vol. 695, pp. 63–143. Springer, Berlin (2006)CrossRefGoogle Scholar
  19. 19.
    Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge Monographs on Mathematical Physics. University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  20. 20.
    Dereziński, J., Jakšić, V., Pillet, C.-A.: Perturbation theory of W*-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15(05), 447–489 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71(15), 2401 (1993)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Esposito, M., Harbola, U., Mukamel, S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81(4), 1665 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74(14), 2694 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80(5–6), 931–970 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Jakšić, V., Kritchevski, E., Pillet, C.-A.: Mathematical theory of the Wigner–Weisskopf atom. In: Large Coulomb Systems, pp. 145–215 (2006)Google Scholar
  27. 27.
    Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics an introduction. In: Frohlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Lecture Notes of the Les Houches Summer School, vol. 95, pp. 213–410. Oxford University Press, Oxford (2011)Google Scholar
  28. 28.
    Jakšić, V., Pillet, C.-A.: Ergodic properties of classical dissipative systems I. Acta Math. 181(2), 245–282 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jakšić, V., Panangaden, J., Panati, A., Pillet, C.-A.: Energy conservation, counting statistics, and return to equilibrium. Lett. Math. Phys. 105(7), 917–938 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jakšić, V., Pillet, C.-A., Rey-Bellet, L.: Entropic fluctuations in statistical mechanics: I. Classical dynamical systems. Nonlinearity 24(3), 699 (2011)zbMATHGoogle Scholar
  31. 31.
    Jakšić, V., Pillet, C.-A., Shirikyan, A.: Entropic fluctuations in Gaussian dynamical systems. Rep. Math. Phys. 77(3), 335–376 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kurchan, J.: A quantum fluctuation theorem (2000). ArXiv preprint arXiv:cond-mat/0007360
  33. 33.
    Mazzola, L., De Chiara, G., Paternostro, M.: Measuring the characteristic function of the work distribution. Phys. Rev. Lett. 110(23), 230602 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Raquépas, R.: Heat full statistics and regularity of perturbations in quantum statistical mechanics. Master’s thesis. McGill University, Montréal (2017)Google Scholar
  35. 35.
    Roncaglia, A.J., Cerisola, F., Paz, J.P.: Work measurement as a generalized quantum measurement. Phys. Rev. Lett. 113(25), 250601 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. I: Functional Analysis. Academic Press, New York (1972)Google Scholar
  37. 37.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)Google Scholar
  38. 38.
    Spohn, H., Lebowitz, J.L.: Stationary non-equilibrium states of infinite harmonic systems. Commun. Math. Phys. 54(2), 97–120 (1977)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Spohn, H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  40. 40.
    Tasaki, H.: Jarzynski relations for quantum systems and some applications (2000). ArXiv preprint arXiv:cond-mat/0009244
  41. 41.
    Thirring, W.: A Course in Mathematical Physics 1 and 2: Classical Dynamical Systems and Classical Field Theory. Springer Science & Business Media, Berlin (2012)CrossRefGoogle Scholar
  42. 42.
    Talkner, P., Lutz, E., Hänggi, P.: Fluctuation theorems: work is not an observable. Phys. Rev. E 75, 050102 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tristan Benoist
    • 1
  • Annalisa Panati
    • 2
    Email author
  • Renaud Raquépas
    • 3
    • 4
  1. 1.Institut de mathématiques de Toulouse, UMR5219Université de Toulouse, CNRS, UPSToulouse Cedex 9France
  2. 2.Aix Marseille Univ, Université de Toulon CNRS, CPTMarseilleFrance
  3. 3.Department of Mathematics and StatisticsMcGill UniversityMontréalCanada
  4. 4.Univ. Grenoble AlpesCNRS, Institut FourierGrenobleFrance

Personalised recommendations