Annales Henri Poincaré

, Volume 20, Issue 2, pp 393–443 | Cite as

The Kontsevich–Penner Matrix Integral, Isomonodromic Tau Functions and Open Intersection Numbers

  • Marco BertolaEmail author
  • Giulio Ruzza


We identify the Kontsevich–Penner matrix integral, for finite size n, with the isomonodromic tau function of a \(3\times 3\) rational connection on the Riemann sphere with n Fuchsian singularities placed in correspondence with the eigenvalues of the external field of the matrix integral. By formulating the isomonodromic system in terms of an appropriate Riemann–Hilbert boundary value problem, we can pass to the limit \(n\rightarrow \infty \) (at a formal level) and identify an isomonodromic system in terms of Miwa variables, which play the role of times of a KP hierarchy. This allows to derive the String and Dilaton equations via a purely Riemann–Hilbert approach. The expression of the formal limit of the partition function as an isomonodromic tau function allows us to derive explicit closed formulæ for the correlators of this matrix model in terms of the solution of the Riemann Hilbert problem with all times set to zero. These correlators have been conjectured to describe the intersection numbers for Riemann surfaces with boundaries, or open intersection numbers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The research of M. B. was supported in part by the Natural Sciences and Engineering Research Council of Canada grant RGPIN-2016-06660. G. R. wishes to thank the Department of Mathematics and Statistics at Concordia University for hospitality during which the work was completed.


  1. 1.
    Alexandrov, A., Buryak, A., Tessler, R.J.: Refined open intersection numbers and the Kontsevich–Penner matrix model. J. High Energy Phys. 2017(3), 123 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexandrov, A.: Open intersection numbers, Kontsevich–Penner model and cut-and-join operators. J. High Energy Phys. 2015(8), 28 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alexandrov, A.: Open intersection numbers, matrix models and MKP hierarchy. J. High Energy Phys. 2015(3), 42 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bertola, M., Cafasso, M.: Darboux transformations and random point processes. Int. Math. Res. Not. 2015(15), 6211 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertola, M., Cafasso, M.: The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes’ phenomenon. Commun. Math. Phys. 352(2), 585–619 (2017)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Bertola, M., Dubrovin, B., Yang, D.: Correlation functions of the KdV hierarchy and applications to intersection numbers over \(\overline{\cal{M}}_{g, n}\). Phys. D Nonlinear Phenom. 327, 30–57 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bertola, M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294(2), 539–579 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brezin, E., Hikami, S.: On an Airy matrix model with a logarithmic potential. J. Phys. A Math. Theor. 45(4), 045203 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brezin, E., Hikami, S.: Random matrix, singularities and open/close intersection numbers. J. Phys. A Math. Theor. 48(47), 475201 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Buryak, A., Tessler, R.J.: Matrix models and a proof of the open analog of Witten’s conjecture. Commun. Math. Phys. 353(3), 1299–1328 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Buryak, A.: Open intersection numbers and the wave function of the KdV hierarchy. Moscow Math. J. 16(1), 27–44 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ince, E.L.: Ordinary Differential Equations. Dover Books on Mathematics. Dover Publications, Mineola (1956)Google Scholar
  13. 13.
    Itzykson, C., Zuber, J.B.: Combinatorics of the modular group. 2. The Kontsevich integrals. Int. J. Mod. Phys. A 7, 5661–5705 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jimbo, M., Miwa, T.: Deformation of linear ordinary differential equations, II. Proc. Jpn. Acad. Ser. A Math. Sci. 56(4), 149–153 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and \(\tau \)-function. Phys. D Nonlinear Phenom. 2(2), 306–352 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Zabrodin, A.: Towards unified theory of 2d gravity. Nucl. Phys. B 380(1), 181–240 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Moore, G.: Geometry of the string equations. Commun. Math. Phys. 133(2), 261–304 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moore, G.: Matrix models of \(2\)D gravity and isomonodromic deformation. Prog. Theor. Phys. Suppl. 102, 255–285 (1991)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Olver, F.: Asymptotics and Special Functions. AKP Classics. Taylor and Francis, Routledge (1997)CrossRefGoogle Scholar
  21. 21.
    Penner, R.C.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27(1), 35–53 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pandharipande, R., Solomon, J.P., Tessler, R.J.: Intersection theory on moduli of disks, open KdV and Virasoro (2014). arXiv:1409.2191
  23. 23.
    Safnuk, B.: Combinatorial models for moduli spaces of open Riemann surfaces (2016). arXiv:1609.07226v2
  24. 24.
    Tessler, R.J.: The combinatorial formula for open gravitational descendents (2015). arXiv:1507.04951v3
  25. 25.
    Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover Phoenix Editions. Dover, Mineola (2002)Google Scholar
  26. 26.
    Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Diff. Geom. 1, 243–310 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsConcordia UniversityMontrealCanada
  2. 2.SISSA, International School for Advanced StudiesTriesteItaly

Personalised recommendations