Annales Henri Poincaré

, Volume 20, Issue 1, pp 125–218 | Cite as

Autonomous Quantum Machines and Finite-Sized Clocks

  • Mischa P. WoodsEmail author
  • Ralph Silva
  • Jonathan Oppenheim


Processes such as quantum computation, or the evolution of quantum cellular automata, are typically described by a unitary operation implemented by an external observer. In particular, an interaction is generally turned on for a precise amount of time, using a classical clock. A fully quantum mechanical description of such a device would include a quantum description of the clock whose state is generally disturbed because of the back-reaction on it. Such a description is needed if we wish to consider finite-sized autonomous quantum machines requiring no external control. The extent of the back-reaction has implications on how small the device can be, on the length of time the device can run, and is required if we want to understand what a fully quantum mechanical treatment of an observer would look like. Here, we consider the implementation of a unitary by a finite-sized device and show that the back-reaction on it can be made exponentially small in the device’s dimension while its energy only increases linearly with dimension. As a result, an autonomous quantum machine need only be of modest size and energy. We are also able to solve a long-standing open problem by using a finite-sized quantum clock to approximate the continuous evolution of an idealised clock. The result has implications for how well quantum devices can be controlled and on the equivalence of different paradigms of control.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Howard, J.: Molecular motors: structural adaptations to cellular functions. Nature 389(6651), 561–567 (1997)ADSGoogle Scholar
  2. 2.
    Frank, J. (ed.): Molecular Machines in Biology. Cambridge University Press, Cambridge (2011). Cambridge Books OnlineGoogle Scholar
  3. 3.
    Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)ADSGoogle Scholar
  4. 4.
    Scovil, H.E.D., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)ADSGoogle Scholar
  5. 5.
    Geusic, J.E., Schulz-DuBois, E.O., Scovil, H.E.D.: Quantum equivalent of the carnot cycle. Phys. Rev. 156, 343–351 (1967)ADSGoogle Scholar
  6. 6.
    Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105(13), 130401 (2010)ADSGoogle Scholar
  7. 7.
    Brask, J.B., Haack, G., Brunner, N., Huber, M.: Autonomous quantum thermal machine for generating steady-state entanglement. New J. Phys. 17(11), 113029 (2015)ADSGoogle Scholar
  8. 8.
    Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111(25), 250404 (2013)ADSGoogle Scholar
  9. 9.
    Malabarba, A.S.L., Short, A.J., Kammerlander, P.: Clock-driven quantum thermal engines. New J. Phys. 17(4), 045027 (2015)ADSMathSciNetGoogle Scholar
  10. 10.
    Tonner, F., Mahler, G.: Autonomous quantum thermodynamic machines. Phys. Rev. E 72(6), 066118 (2005)ADSMathSciNetGoogle Scholar
  11. 11.
    Gelbwaser-Klimovsky, D., Kurizki, G.: Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Phys. Rev. E 90(2), 022102 (2014)ADSGoogle Scholar
  12. 12.
    Correa, L.A., Palao, J.P., Alonso, D., Adesso, G.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)Google Scholar
  13. 13.
    Tonner, F., Mahler, G.: Quantum Limit of the Carnot Engine. 1807–2007 Knowledge for Generations (2007)Google Scholar
  14. 14.
    Feynman, R.P.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Boston (1963)Google Scholar
  15. 15.
    Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)ADSGoogle Scholar
  16. 16.
    Erker, P., Mitchison, M.T., Silva, R., Woods, M.P., Brunner, N., Huber, M.: Autonomous quantum clocks: Does thermodynamics limit our ability to measure time? Phys. Rev. X 7, 031022 (2017)Google Scholar
  17. 17.
    Geusic, J.E., Schulz-DuBios, E.O., Scovil, H.E.D.: Quantum equivalent of the Carnot cycle. Phys. Rev. 156, 343–351 (1967)ADSGoogle Scholar
  18. 18.
    Brandão, F., Horodecki, M., Ng, N., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. 112(11), 3275–3279 (2015)ADSGoogle Scholar
  19. 19.
    van Dam, W., Hayden, P.: Universal entanglement transformations without communication. Phys. Rev. A 67(6), 060302 (2003)MathSciNetGoogle Scholar
  20. 20.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)ADSGoogle Scholar
  21. 21.
    Ranković, S., Liang, Y.C., Renner, R.: Quantum clocks and their synchronisation—the alternate ticks game (2015). arXiv:1506.01373v1
  22. 22.
    Peres, A.: Measurement of time by quantum clocks. Am. J. Phys. 48(7), 552 (1980)ADSMathSciNetGoogle Scholar
  23. 23.
    Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82, 2207–2210 (1999)ADSGoogle Scholar
  24. 24.
    Allcock, G.R.: The time of arrival in quantum mechanics i. Formal considerations. Ann. Phys. 53(2), 253–285 (1969)ADSGoogle Scholar
  25. 25.
    Salecker, H., Wigner, E.P.: Quantum limitations of the measurement of space-time distances. Phys. Rev. 109, 571–577 (1958)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Frenzel, M.F., Jennings, D., Rudolph, T.: Quasi-autonomous quantum thermal machines and quantum to classical energy flow. New J. Phys. 18(2), 023037 (2016)ADSGoogle Scholar
  27. 27.
    Pauli, W.: Handbuch der Physik, vol. 24, pp. 83–272. Springer, Berlin (1933)Google Scholar
  28. 28.
    Pauli, W.: Encyclopedia of Physics, vol. 1, p. 60. Springer, Berlin (1958)Google Scholar
  29. 29.
    Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310(2), 419–454 (2012)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Massar, S., Spindel, P.: Uncertainty relation for the discrete fourier transform. Phys. Rev. Lett. 100, 190401 (2008)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Woods, M.P., Silva, R., Pütz, G., Stupar, S.R., Renner, R.: Quantum clocks are more accurate than classical ones. ArXiv:1806.00491
  32. 32.
    Pegg, D.T., Barnett, S.M.: Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 39, 1665–1675 (1989)ADSGoogle Scholar
  33. 33.
    Busch, P.: No information without disturbance: quantum limitations of measurement. In: Christian, W., Myrvold, J. (eds.) Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: An International Conference in Honour of Abner Shimony. Springer (2006). arXiv:0706.3526v1
  34. 34.
    Busch, P.: The time–energy uncertainty relation. In: Muga, J.G., Sala Mayato, R., Egusquiza, I.L. (eds.) Time in Quantum Mechanics, 2nd edn, pp. 69–98. Springer, Berlin (2002)Google Scholar
  35. 35.
    Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)Google Scholar
  36. 36.
    Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Am. J. Phys. 56, 958 (1988)ADSzbMATHGoogle Scholar
  37. 37.
    Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions, 2 edn. Birkhäuser, Basel (2002).
  38. 38.
    Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30, 185–205 (2010)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Sophus, L., Friedrich, E.: Theorie der Transformationsgruppen. 1st edition, Leipzig; 2nd edition, AMS Chelsea Publishing, 1970 (1888)Google Scholar
  40. 40.
    Garrison, J.C., Wong, J.: Canonically conjugate pairs, uncertainty relations, and phase operators. J. Math. Phys. 11, 2242–2249 (1970)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Fourier Analysis, self-Adjointness. Number v. 2 in Methods of Modern Mathematical Physics. Academic Press, London (1975)zbMATHGoogle Scholar
  42. 42.
    Weyl, H.: Quantenmechanik und gruppentheorie. Z. Phys. 46(1), 1–46 (1927)ADSzbMATHGoogle Scholar
  43. 43.
    Grafakos, L.: Classical Fourier Analysis. Springer, Berlin (2014)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mischa P. Woods
    • 1
    Email author
  • Ralph Silva
    • 2
  • Jonathan Oppenheim
    • 3
  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  2. 2.Group of Applied PhysicsUniversity of GenevaGenevaSwitzerland
  3. 3.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations