The Reduced Phase Space of Palatini–Cartan–Holst Theory
Article
First Online:
- 54 Downloads
- 2 Citations
Abstract
General relativity in four dimensions can be reformulated as a gauge theory, referred to as Palatini–Cartan–Holst theory. This paper describes its reduced phase space using a geometric method due to Kijowski and Tulczyjew and its relation to that of the Einstein–Hilbert approach.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank Giovanni Canepa for several constructive discussions, and Friedrich Hehl for valuable comments about the controversy in the nomenclature. We thank G. Canepa and the anonymous referee for having found flaws in previous versions of the article.
References
- 1.Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 18 (1986)MathSciNetCrossRefGoogle Scholar
- 2.Barbero, G,J.F.: Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 51, 5507 (1995)ADSMathSciNetGoogle Scholar
- 3.Batalin, I.A., Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122(2), 157–164 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 4.Batalin, I.A., Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. B 69(3), 309–312 (1977)ADSCrossRefGoogle Scholar
- 5.Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)ADSMathSciNetCrossRefGoogle Scholar
- 6.Blagojević, M., Hehl, F.W.: Gauge Theories of Gravitation: A Reader with Commentaries. Imperial College Press, London (2013)CrossRefzbMATHGoogle Scholar
- 7.Cartan, E.: Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion. C. R. Acad. Sci. 174, 593–595 (1922). (Comptes rendus hebdomadaires des séances de l’Académie des sciences 174, 437–439, 593–595, 734–737, 857–860, 1104–1107)zbMATHGoogle Scholar
- 8.Cattaneo, A.S., Mnëv, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 9.Cattaneo, A.S., Mnev, P., Reshetikin, N.: Classical and quantum Lagrangian field theories with boundary. In: Proceedings of the Corfu Summer Institute 2011 School and Workshops on Elementary Particle Physics and Gravity, Corfu, Greece, PoS(Corfu2011)044 (2011)Google Scholar
- 10.Cattaneo, A.S., Schiavina, M.: BV-BFV approach to general relativity, Einstein–Hilbert action. J. Math. Phys. 57(2), 023515 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 11.Cattaneo, A.S., Schiavina, M.: BV-BFV approach to General Relativity: Palatini–Cartan–Holst action. arXiv:1707.06328
- 12.Cattaneo, A.S., Schiavina, M.: On time. Lett. Math. Phys. 107(2), 375–408 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 13.Cattaneo, A.S., Schiavina, M., Selliah, I.: BV equivalence between triadic gravity and BF theory in three dimensions. Lett. Math. Phys. 108, 1873–1884 (2018). https://doi.org/10.1007/s11005-018-1060-5 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 14.Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Einstein, A.: Einheitliche Feldtheorie yon Gravitation und Elektrizität. Sitzungsber. Pruess. Akad. Wiss. 414 (1925)Google Scholar
- 16.Ferraris, M., Francaviglia, M., Reina, C.: Variational formulation of general relativity from 1915 to 1925 “Palatini’s method” discovered by Einstein in 1925. Gen. Relativ. Gravit. 14(3), 243–254 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 17.Floreanini, R., Percacci, R.: Palatini formalism and new canonical variables for GL(4)-invariant gravity. Class. Quantum Gravity 7, 1805 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 18.Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7(1), 65–222 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Hojman, R., Mukku, C., Sayed, W.A.: Parity violation in metric-torsion theories of gravitation. Phys. Rev. D 22, 1915 (1980)ADSCrossRefGoogle Scholar
- 20.Holst, S.: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev. D 53, 5966 (1996)ADSMathSciNetCrossRefGoogle Scholar
- 21.Immirzi, G.: Real and complex connections for canonical gravity. Class. Quantum Gravity 14, L177 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 22.Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 23.Kijowski, J., Tulczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture notes in Physics, vol. 107. Springer, Berlin (1979)Google Scholar
- 24.Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 25.Palatini, A.: Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton. Rend. Circ. Mat. Palermo 43, 203 (1919). (English translation by R.Hojman and C. Mukku in P.G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980))CrossRefzbMATHGoogle Scholar
- 26.Perez, A., Rezende, D.J.: Four-dimensional Lorentzian Holst action with topological terms. Phys. Rev. D 79, 064026 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 27.Rovelli, C., Thiemann, T.: Immirzi parameter in quantum general relativity. Phys. Rev. D 57, 1009 (1998)ADSMathSciNetCrossRefGoogle Scholar
- 28.Schaetz, F.: BFV-complex and higher homotopy structures. Commun. Math. Phys. 286(2), 399–443 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 29.Schaetz, F.: Invariance of the BFV complex. Pac. J. Math. 248(2), 453–474 (2010)MathSciNetCrossRefGoogle Scholar
- 30.Schiavina, M.: BV-BFV Approach to General Relativity. PhD Thesis, University of Zürich (2016)Google Scholar
- 31.Sciama, D.: The physical structure of general relativity. Rev. Mod. Phys. 36, 463 (1964)ADSCrossRefGoogle Scholar
- 32.Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2008)Google Scholar
- 33.Wise, D.: Symmetric space Cartan connections and gravity in three and four dimensions. SIGMA 5, 080 (2009)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2018