Annales Henri Poincaré

, Volume 19, Issue 11, pp 3289–3319 | Cite as

Relative Entropy and Entropy Production for Equilibrium States in pAQFT

  • Nicolò Drago
  • Federico Faldino
  • Nicola PinamontiEmail author


We analyze the relative entropy of certain KMS states for scalar self-interacting quantum field theories over Minkowski backgrounds that have been recently constructed by Fredenhagen and Lindner (Commun Math Phys 332:895, 2014) in the framework of perturbative algebraic quantum field theory. The definition we are using is a generalization of the Araki relative entropy to the case of field theories. In particular, we shall see that the analyzed relative entropy is positive in the sense of perturbation theory; hence, even if the relative modular operator is not at disposal in this context, the proposed extension is compatible with perturbation theory. In the second part of the paper, we analyze the adiabatic limits of these states, showing that also the density of relative entropy obtained dividing the relative entropy by the spatial volume of the region where interaction takes place is positive and finite. In the last part of the paper, we discuss the entropy production for states obtained by an ergodic mean (time average) of perturbed KMS states evolved with the free evolution recently constructed by the authors of the present paper. We show that their entropy production vanishes even if return to equilibrium (Haag et al. in Commun Math Phys 38:173–193, 1974; Robinson in Commun Math Phys 31:171–189, 1973) does not hold. This means that states constructed in this way are thermodynamically simple, namely they are not so far from equilibrium states.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This paper is dedicated to the memory of Claudio Faldino, father of one of the authors who recently passed away unexpectedly. In particular, FF wishes to express to him his deepest gratitude for his support, his encouragement and for all the sacrifices he made for no reasons but the love that a father feels for his son. The authors are grateful to K. Fredenhagen and to V. Jakšić for helpful discussions on the subject. We also thank L. Bruneau for useful comments on an earlier version of this paper. N.D. was supported by the National Group of Mathematical Physics (GNFM-INdAM).


  1. 1.
    Altherr, T.: Infrared problem in \(g{\varphi }^4\) theory at finite temperature. Phys. Lett. B 238(24), 360–366 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS Kyoto Univ. 9(1), 165–209 (1973)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Araki, H.: Relative entropy of states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11, 809–833 (1976)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Araki, H.: Relative entropy of states of von Neumann algebras II. Publ. RIMS Kyoto Univ. 13, 173–192 (1977)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. In: Bär, C., et al. (eds.) Global Differential Geometry, pp. 359–400. Springer, Berlin (2012)CrossRefGoogle Scholar
  6. 6.
    Bernard, D., Doyon, B.: Non-equilibrium steady-states in conformal field theory. Ann. Henri Poincaré 16, 113–161 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bernard, D., Doyon, B.: Conformal field theory out of equilibrium: a review. J. Stat. Mech. 2016, 064055 (2016)Google Scholar
  8. 8.
    Bogoliubov, N.N., Shirkov, D.V.: Introduction to Theory of Quantized Fields. Interscience Publishers Inc., New York (1959)Google Scholar
  9. 9.
    Bratteli, O., Kishimoto, A., Robinson, D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61, 209–238 (1978)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2. Springer, Berlin (1997)CrossRefGoogle Scholar
  11. 11.
    Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Brunetti, R., Fredenhagen, K.: Quantum field theory on curved backgrounds. In: Lecture Notes in Physics, 786 edn, Chapter 5, pp. 129–155. Springer (2009)Google Scholar
  14. 14.
    Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Chilian, B., Fredenhagen, K.: The time-slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513–522 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Donald, M.J.: Relative Hamiltonians which are not bounded from above. J. Func. Anal. 91, 143–173 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Doyon, B., Lucas, A., Schalm, K., Bhaseen, M.J.: Non-equilibrium steady states in the Klein–Gordon theory. J. Phys. A Math. Theor. 48, 095002 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Drago, N., Faldino, F., Pinamonti, N.: On the stability of KMS states in perturbative algebraic quantum field theories. Commun. Math. Phys. 357(1), 267–293 (2018). arXiv:1609.01124 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. Ann. Henri Poincaré 18, 807–868 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. Henri Poincaré Sect. A 19(3), 211–295 (1973)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Fredenhagen, K., Lindner, F.: Construction of KMS states in perturbative QFT and renormalized Hamiltonian dynamics. Commun. Math. Phys. 332, 895 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. In: Calaque, D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories, pp. 17–55. Springer (2015). arXiv:1208.1428 [math-ph]
  24. 24.
    Fredenhagen, K., Rejzner, K.: QFT on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Gogolin, C., Eisert, J.: Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Haag, R.: Local Quantum Physics: Fields Particles Algebras. Text and Monographs in Physics. Springer, Berlin (1992)CrossRefGoogle Scholar
  27. 27.
    Haag, R., Kastler, D., Trych-Pohlmeyer, E.B.: Stability and equilibrium states. Commun. Math. Phys. 38, 173–193 (1974)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Haag, R., Trych-Pohlmeyer, E.: Stability properties and equilibrium states. Commun. Math. Phys. 56, 213 (1977)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Hollands, S., Longo, R.: Non-equilibrium thermodynamics and conformal field theory. Commun. Math. Phys. 357(1), 43–60 (2018). arXiv:1605.01581 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Hollands, S., Sanders, K.: Entanglement measures and their properties in quantum field theory (2017). arXiv:1702.04924
  32. 32.
    Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Hollands, S., Wald, R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123–160 (2003)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227–312 (2005)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Jakšić, V., Pillet, C.-A.: On entropy production in quantum statistical mechanic. Commun. Math. Phys. 217, 285 (2001)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Jakšić, V., Pillet, C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Jakšić, V., Pillet, C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108(516), 787–829 (2002)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon. Phys. Rep. 207(2), 49–136 (1991)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Kosaki, H.: Relative entropy of states: a variational expression. J. Oper. Theory 16, 335–348 (1986)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Landsman, N.P., van Weert, C.G.: Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Le Bellac, M.: Thermal Field Theory. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  43. 43.
    Lindner, F.: Perturbative Algebraic Quantum Field Theory at Finite Temperature. Ph.D. Thesis, University of Hamburg (2013)Google Scholar
  44. 44.
    Moretti, V.: Comments on the stress-energy tensor operator in curved spacetime. Commun. Math. Phys. 232, 189–221 (2003)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Ojima, I., Hasegawa, H., Ichiyanagi, M.: Entropy production and its positivity in nonlinear response theory of quantum dynamical systems. J. Stat. Phys. 50, 633 (1988)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Ojima, I.: Entropy production and non-equilibrium stationarity in quantum dynamical systems: physical meaning of van Hove limit. J. Stat. Phys. 56, 203 (1989)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Ojima, I.: Entropy production and non-equilibrium stationarity in quantum dynamical systems. In: Proceedings of International Workshop on Quantum Aspects of Optical Communications. Lecture Notes in Physics 378, p. 164. Springer, Berlin (1991)Google Scholar
  48. 48.
    Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Robinson, D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Ruelle, D.: Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57–75 (2000)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Ruelle, D.: Entropy production in quantum spin systems. Commun. Math. Phys. 224, 3 (2001)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Ruelle, D.: How should one define entropy production for nonequilibrium quantum spin systems? Rev. Math. Phys. 14(7–8), 701–707 (2002)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 227 (1978)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Spohn, H., Lebowitz, J.L.: Stationary non-equilibrium states of infinite harmonic systems. Commun. Math. Phys. 54, 97–120 (1977)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory. Lecture Notes in Physics, 11. Springer, Berlin (1971)Google Scholar
  56. 56.
    Steinmann, O.: Perturbative quantum field theory at positive temperature: an axiomatic approach. Commun. Math. Phys. 170, 405–416 (1995)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nicolò Drago
    • 1
    • 2
  • Federico Faldino
    • 3
    • 4
  • Nicola Pinamonti
    • 3
    • 4
    Email author
  1. 1.Dipartimento di FisicaUniversità di PaviaPaviaItaly
  2. 2.Istituto Nazionale di Fisica Nucleare - Sezione di PaviaPaviaItaly
  3. 3.Dipartimento di MatematicaUniversità di GenovaGenoaItaly
  4. 4.Istituto Nazionale di Fisica Nucleare - Sezione di GenovaGenoaItaly

Personalised recommendations