Advertisement

Examples of Interacting Particle Systems on \(\mathbb {Z}\) as Pfaffian Point Processes: Annihilating and Coalescing Random Walks

  • Barnaby Garrod
  • Mihail Poplavskyi
  • Roger P. Tribe
  • Oleg V. Zaboronski
Open Access
Article

Abstract

A class of interacting particle systems on \(\mathbb {Z}\), involving instantaneously annihilating or coalescing nearest neighbour random walks, are shown to be Pfaffian point processes for all deterministic initial conditions. As diffusion limits, explicit Pfaffian kernels are derived for a variety of coalescing and annihilating Brownian systems. For Brownian motions on \(\mathbb {R}\), depending on the initial conditions, the corresponding kernels are closely related to the bulk and edge scaling limits of the Pfaffian point process for real eigenvalues for the real Ginibre ensemble of random matrices. For Brownian motions on \(\mathbb {R}_{+}\) with absorbing or reflected boundary conditions at zero, new interesting Pfaffian kernels appear. We illustrate the utility of the Pfaffian structure by determining the extreme statistics of the rightmost particle for the purely annihilating Brownian motions, and also computing the probability of overcrowded regions for all models.

Notes

Acknowledgements

B.G. supported by EPSRC Grant EP/H023364/1; M. P. and R. T. supported by EPSRC Grant No. RMAA3188; O.Z. supported by Leverhulme Trust Research Fellowship.

References

  1. 1.
    Ben-Avraham, D., Brunet, E.: On the relation between one-species diffusion-limited coalescence and annihilation in one dimension. J. Phys. A 38(15), 3247–3252 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Billingsley, P.: Convergence of Probability Measures. Wiley, Hoboken (1968)zbMATHGoogle Scholar
  3. 3.
    Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. Ann. Probab. 42(6), 2314–2382 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limits. Commun. Math. Phys. 291(1), 177–224 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borodin, A., Poplavskyi, M., Sinclair, C.D., Tribe, R., Zaboronski, O.: Erratum to: the Ginibre ensemble of real random matrices and its scaling limits. Commun. Math. Phys. 346, 1051 (2016)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Connaughton, C., Rajesh, R., Tribe, R., Zaboronski, O.: Non-equilibrium phase diagram for a model with coalescence, evaporation and deposition. J. Stat. Phys. 152(6), 1115–1144 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Derrida, B., Bray, A.J., Godreche, C.: Nontrivial exponents in the zero temperature dynamics of the 1D Ising and Potts models. J. Phys. A 27(11), L357–L361 (1994)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Derrida, B., Zeitak, R.: Distribution of domain sizes in the zero temperature Glauber dynamics of the 1d Potts model. Phys. Rev. E 54, 2513–2525 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, p. x+534. Wiley, New York (1986). ISBN: 0-471-08186-8Google Scholar
  10. 10.
    Felderhof, B.U.: Spin relaxation of the Ising chain, Reports on Mathematical Physics 1, 215 (1970), and Note on spin relaxation of the Ising chain. Reports on Mathematical Physics 2, 151–152 (1971)Google Scholar
  11. 11.
    Forrester, P.J., Nagao, T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99(5), 050603 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Garrod, B., Tribe, R., Zaboronski, O.: Examples of interacting particle systems on \(\mathbb{Z}\) as Pfaffian point processes II—coalescing branching random walks and annihilating random walks with immigrationGoogle Scholar
  13. 13.
    Garrod, B.: Warwick Thesis (2016)Google Scholar
  14. 14.
    Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294–307 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Henkel, M.: Classical and Quantum Nonlinear Integrable Systems: Theory and Applications, pp. 256–287. Institute of Physics Publishing Ltd, Bristol and Philadelphia (2003)Google Scholar
  16. 16.
    Le Doussal, P., Monthus, C.: Reaction diffusion models in one dimension with disorder. Phys. Rev. E (3) 60(2, part A), 1212–1238 (1999)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Poplavskyi, M., Tribe, R., Zaboronski, O.: On the distribution of the largest real eigenvalue for the real Ginibre ensemble. Ann. Appl. Probab. 27(3), 1395–1413 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rider, B., Sinclair, C.D.: Extremal laws for the real Ginibre ensemble. Ann. Appl. Probab. 24(4), 1621–1651 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sommers, H.-J., Wieczorek, W.: General eigenvalue correlations for the real Ginibre ensemble. J. Phys. A 41(40), 405003 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Soshnikov, A.: Determinantal random fields. In: Francoise, J.-P., Naber, G., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, vol. 2, pp. 47–53. Elsevier, Oxford (2006)CrossRefGoogle Scholar
  21. 21.
    Stembridge, J.R.: Non-intersecting paths, Pfaffians and plane partitions. Adv. Math. 83, 96–131 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tribe, R., Zaboronski, O.: Pfaffian formulae for one dimensional coalescing and annihilating systems. Electron. J. Probab. 16(76), 2080–2103 (2011). MR2851057MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tribe, R., Yip, J., Zaboronski, O.: One dimensional annihilating and coalescing particle systems as extended Pfaffian point processes. Electron. Commun. Probab. 17(40), p. 7. (2012), and Erratum Electron. Commun. Probab. 20, paper no. 46, p. 2 (2015)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Barnaby Garrod
    • 1
  • Mihail Poplavskyi
    • 1
  • Roger P. Tribe
    • 1
  • Oleg V. Zaboronski
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations