Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy

Abstract

The data processing inequality states that the quantum relative entropy between two states \(\rho \) and \(\sigma \) can never increase by applying the same quantum channel \(\mathcal {N}\) to both states. This inequality can be strengthened with a remainder term in the form of a distance between \(\rho \) and the closest recovered state \((\mathcal {R} \circ \mathcal {N})(\rho )\), where \(\mathcal {R}\) is a recovery map with the property that \(\sigma = (\mathcal {R} \circ \mathcal {N})(\sigma )\). We show the existence of an explicit recovery map that is universal in the sense that it depends only on \(\sigma \) and the quantum channel \(\mathcal {N}\) to be reversed. This result gives an alternate, information-theoretic characterization of the conditions for approximate quantum error correction.

References

  1. 1.

    Audenaert, K.M.R.: A sharp continuity estimate for the von Neumann entropy. J. Phys. A Math. Theor. 40(28), 8127 (2007)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Barnum, H., Knill, E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43(5), 2097–2106 (2002). arXiv:quant-ph/0004088

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Berta, M., Lemm, M., Wilde, M.M.: Monotonicity of quantum relative entropy and recoverability. Quantum Inf. Comput. 15(15 & 16), 1333–1354 (2015)

    MathSciNet  Google Scholar 

  5. 5.

    Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)

    MATH  Book  Google Scholar 

  6. 6.

    Brandão, F.G.S.L., Harrow, A.W., Oppenheim, J., Strelchuk, S.: Quantum conditional mutual information, reconstructed states, and state redistribution. Phys. Rev. Lett. 115(5), 050501 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Devetak, I., Yard, J.: Exact cost of redistributing multipartite quantum states. Phys. Rev. Lett. 100(23), 230501 (2008)

    ADS  Article  Google Scholar 

  8. 8.

    Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340(2), 575–611 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Fuchs, C., van de Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Grafakos, L.: Classical Fourier Analysis, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. 11.

    Grümm, H.: Two theorems about \({C}_p\). Rep. Math. Phys. 4(3), 211–215 (1973)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Hiai, F., Mosonyi, M., Petz, D., Beny, C.: Quantum \(f\)-divergences and error correction. Rev. Math. Phys. 23(7), 691–747 (2011). arXiv:1008.2529

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Hirschman, I.I.: A convexity theorem for certain groups of transformations. Journal d’Analyse Mathématique 2(2), 209–218 (1952)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Holevo, A.S.: Quantum Systems, Channels, Information. De Gruyter Studies in Mathematical Physics 16, de Gruyter (2012)

  15. 15.

    Jencǒvà, A.: Randomization Theorems for Quantum Channels. arXiv:1404.3900 (2014)

  16. 16.

    Jencǒvà, A., Petz, D.: Sufficiency in quantum statistical inference. Commun. Math. Phys. 263(1), 259–276 (2006)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Jencǒvà, A., Petz, D.: Sufficiency in quantum statistical inference: a survey with examples. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 09(03), 331–351 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Li, K., Winter, A.: Squashed Entanglement, k-Extendibility, Quantum Markov Chains, and Recovery Maps. Found. Phys. (2018). https://doi.org/10.1007/s10701-018-0143-6

  20. 20.

    Lieb, E.H., Ruskai, M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30, 434–436 (1973)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Lindblad, G.: Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39(2), 111–119 (1974)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151 (1975)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Mandayam, P., Ng, H.K.: Towards a unified framework for approximate quantum error correction. Phys. Rev. A 86(1), 012335 (2012). arXiv:1202.5139

    ADS  Article  Google Scholar 

  26. 26.

    Mosonyi, M., Petz, D.: Structure of sufficient quantum coarse-grainings. Lett. Math. Phys. 68(1), 19–30 (2004)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. 28.

    Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    MATH  Book  Google Scholar 

  29. 29.

    Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Petz, D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. 39(1), 97–108 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Petz, D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15(01), 79–91 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Powers, R.T., Størmer, E.: Free states of the canonical anticommutation relations. Commun. Math. Phys. 16(1), 1–33 (1970)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill Book Co, New York (1976)

    MATH  Google Scholar 

  34. 34.

    Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. 43(9), 4358–4375 (2002)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Seshadreesan, K.P., Berta, M., Wilde, M.M.: Rényi squashed entanglement, discord, and relative entropy differences. J. Phys. A Math. Theor. 48(39), 395303 (2015)

    MATH  Article  Google Scholar 

  36. 36.

    Shirokov, M.E.: Measures of quantum correlations in infinite-dimensional systems. Sbornik Math. 207(5), 724 (2015). arXiv:1506.06377

    ADS  MATH  Article  Google Scholar 

  37. 37.

    Simon, B.: Trace Ideals and Their Applications, 2nd edn. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  38. 38.

    Sutter, D., Fawzi, O., Renner, R.: Universal recovery map for approximate Markov chains. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472, 2186 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Sutter, D., Tomamichel, M., Harrow, A.W.: Strengthened monotonicity of relative entropy via pinched Petz recovery map. IEEE Trans. Inf. Theory 62(5), 2907–2913 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Uhlmann, A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9(2), 273–279 (1976)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Uhlmann, A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Wilde, M.M.: Recoverability in quantum information theory. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 471(2182), 20150338 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Winter, A., Li, K.: A Stronger Subadditivity Relation? With Applications to Squashed Entanglement, Sharability and Separability. http://www.scribd.com/document/337859204 (2012)

Download references

Acknowledgements

We thank Omar Fawzi, Rupert Frank, Jürg Fröhlich, Elliott Lieb, Volkher Scholz and Marco Tomamichel for helpful discussions. We further thank the anonymous referee for constructive feedback. MJ’s work was supported by NSF DMS 1501103 and NSF-DMS 1201886. RR and DS acknowledge support by the European Research Council (ERC) via grant No. 258932, by the Swiss National Science Foundation (SNSF) via the National Centre of Competence in Research “QSIT,” and by the European Commission via the project “RAQUEL.” MMW acknowledges support from the NSF under Award Nos. CCF-1350397 & 1714215 and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019. He is also grateful to co-authors MJ, RR, and AW for hospitality and support during research visits in summer 2015. AWs work was supported by the EU (STREP RAQUEL), the ERC (AdG IRQUAT), the Spanish MINECO (grant FIS2013-40627-P) with the support of FEDER funds, as well as by the Generalitat de Catalunya CIRIT, project 2014-SGR-966.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Sutter.

Additional information

Communicated by David Perez-Garcia.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Junge, M., Renner, R., Sutter, D. et al. Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy. Ann. Henri Poincaré 19, 2955–2978 (2018). https://doi.org/10.1007/s00023-018-0716-0

Download citation