Annales Henri Poincaré

, Volume 19, Issue 8, pp 2297–2346 | Cite as

Extended Riemannian Geometry I: Local Double Field Theory

  • Andreas DeserEmail author
  • Christian Sämann


We present an extended version of Riemannian geometry suitable for the description of current formulations of double field theory (DFT). This framework is based on graded manifolds, and it yields extended notions of symmetries, dynamical data and constraints. In special cases, we recover general relativity with and without 1-, 2- and 3-form gauge potentials as well as DFT. We believe that our extended Riemannian geometry helps to clarify the role of various constructions in DFT. For example, it leads to a covariant form of the strong section condition. Furthermore, it should provide a useful step toward global and coordinate invariant descriptions of T- and U-duality invariant field theories.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank David Berman, Ralph Blumenhagen, André Coimbra, Dieter Lüst and Jim Stasheff for discussions. The work of CS was partially supported by the Consolidated Grant ST/L000334/1 from the UK Science and Technology Facilities Council. AD and CS want to thank the Department of Mathematics of Heriot-Watt University and the Institut für Theoretische Physik in Hannover for hospitality, respectively.


  1. 1.
    Giveon, A., Porrati, M., Rabinovici, E.: Target space duality in string theory. Phys. Rep. 244, 77 (1994). arXiv:hep-th/9401139 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Tseytlin, A.A.: Duality symmetric closed string theory and interacting chiral scalars. Nucl. Phys. B 350, 395 (1991)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Siegel, W.: Superspace duality in low-energy superstrings. Phys. Rev. D 48, 2826 (1993). arXiv:hep-th/9305073 ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Siegel, W.: Two-vierbein formalism for string-inspired axionic gravity. Phys. Rev. D 47, 5453 (1993). arXiv:hep-th/9302036 ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hull, C.M.: A geometry for non-geometric string backgrounds. JHEP 0510, 065 (2005). arXiv:hep-th/0406102 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hull, C.M., Reid-Edwards, R.A.: Non-geometric backgrounds, doubled geometry and generalised T-duality. JHEP 0909, 014 (2009). arXiv:0902.4032 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hull, C., Zwiebach, B.: Double field theory. JHEP 0909, 99 (2009). arXiv:0904.4664 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Zwiebach, B.: Double field theory, T-duality, and Courant brackets. Lect. Notes Phys. 851, 265 (2012). arXiv:1109.1782 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Berman, D.S., Thompson, D.C.: Duality symmetric string and M-theory. Phys. Rep. 566, 1 (2014). arXiv:1306.2643 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Aldazabal, G., Marques, D., Nunez, C.: Double field theory: a pedagogical review. Class. Quant. Grav. 30, 163001 (2013). arXiv:1305.1907 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hohm, O., Lüst, D., Zwiebach, B.: The spacetime of double field theory: review, remarks, and outlook. Fortsch. Phys. 61, 926 (2013). arXiv:1309.2977 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hitchin, N.: Generalized Calabi–Yau manifolds. Q. J. Math. Oxf. Ser. 54, 281 (2003). arXiv:math.DG/0209099 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hitchin, N.: Brackets, forms and invariant functionals. arXiv:math.DG/0508618
  14. 14.
    Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford (2003). arXiv:math.DG/0401221
  15. 15.
    Vaisman, I.: On the geometry of double field theory. J. Math. Phys. 53, 033509 (2012). arXiv:1203.0836 [math.DG]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Vaisman, I.: Towards a double field theory on para-Hermitian manifolds. J. Math. Phys. 54, 123507 (2013). arXiv:1209.0152 [math.DG]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hohm, O., Zwiebach, B.: Towards an invariant geometry of double field theory. J. Math. Phys. 54, 032303 (2013). arXiv:1212.1736 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cederwall, M.: The geometry behind double geometry. JHEP 1409, 070 (2014). arXiv:1402.2513 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Blumenhagen, R., Hassler, F., Lüst, D.: Double field theory on group manifolds. JHEP 1502, 001 (2015). arXiv:1410.6374 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Deser, A., Stasheff, J.: Even symplectic supermanifolds and double field theory. Commun. Math. Phys. 339, 1003 (2015). arXiv:1406.3601 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bakas, I., Lüst, D., Plauschinn, E.: Towards a world-sheet description of doubled geometry in string theory. arXiv:1602.07705 [hep-th]
  22. 22.
    Aschieri, P., Szabo, R.J.: Triproducts, nonassociative star products and geometry of R-flux string compactifications. J. Phys. Conf. Ser. 634, 012004 (2015). arXiv:1504.03915 [hep-th]CrossRefGoogle Scholar
  23. 23.
    Gawedzki, K.: Topological actions in two-dimensional quantum field theories. In: Nonperturbative Quantum Field Theory (Cargèse, 1987). NATO Adv. Sci. Inst. Ser. B Phys., vol. 185, pp. 101–141. Plenum, New York (1988)Google Scholar
  24. 24.
    Freed, D.S., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math 3, 819 (1999). arXiv:hep-th/9907189 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lada, T., Stasheff, J.: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087 (1993). arXiv:hep-th/9209099 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Roytenberg, D., Weinstein, A.: Courant algebroids and strongly homotopy Lie algebras. Lett. Math. Phys. 46, 81 (1998). arXiv:math.QA/9802118 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. Ph.D. thesis, UC Berkeley (1999). arXiv:math.DG/9910078
  28. 28.
    Kosmann-Schwarzbach, Y.: Derived brackets. Lett. Math. Phys. 69, 61 (2004). arXiv:math.DG/0312524 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Blumenhagen, R., Fuchs, M.: Towards a theory of nonassociative gravity. JHEP 1607, 019 (2016). arXiv:1604.03253 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Berman, D.S., Cederwall, M., Perry, M.J.: Global aspects of double geometry. JHEP 1409, 066 (2014). arXiv:1401.1311 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Papadopoulos, G.: Seeking the balance: patching double and exceptional field theories. JHEP 1410, 089 (2014). arXiv:1402.2586 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gualtieri, M.: Branes on Poisson varieties. arXiv:0710.2719 [math.DG]
  33. 33.
    Jeon, I., Lee, K., Park, J.-H.: Differential geometry with a projection: application to double field theory. JHEP 1104, 14 (2011). arXiv:1011.1324 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Jeon, I., Lee, K., Park, J.-H.: Stringy differential geometry, beyond Riemann. Phys. Rev. D 84, 044022 (2011). arXiv:1105.6294 [hep-th]ADSCrossRefGoogle Scholar
  35. 35.
    Hohm, O., Zwiebach, B.: On the Riemann tensor in double field theory. JHEP 1205, 126 (2012). arXiv:1112.5296 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Jurco, B., Vysoky, J.: Leibniz algebroids, generalized Bismut connections and Einstein–Hilbert actions. J. Geom. Phys. 97, 25 (2015). arXiv:1503.03069 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Deser, A., Heller, M., Saemann, C.: Extended Riemannian geometry II: local exceptional field theory (in preparation) Google Scholar
  38. 38.
    Graña, M., Minasian, R., Petrini, M., Waldram, D.: T-duality, generalized geometry and non-geometric backgrounds. JHEP 0904, 075 (2009). arXiv:0807.4527 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Shapere, A.D., Wilczek, F.: Selfdual models with theta terms. Nucl. Phys. B 320, 669 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    Giveon, A., Rabinovici, E., Veneziano, G.: Duality in string background space. Nucl. Phys. B 322, 167 (1989)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Maharana, J., Schwarz, J.H.: Noncompact symmetries in string theory. Nucl. Phys. B 390, 3 (1993). arXiv:hep-th/9207016 ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Narain, K.S.: New heterotic string theories in uncompactified dimensions \(<10\). Phys. Lett. B 169, 41 (1986)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Hohm, O., Hull, C., Zwiebach, B.: Generalized metric formulation of double field theory. JHEP 1008, 8 (2010). arXiv:1006.4823 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sheng, Y., Zhu, C.: Higher extensions of Lie algebroids. Commun. Contemp. Math. 19, 1650034 (2016). arXiv:1103.5920 [math-ph]MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Batchelor, M.: The structure of supermanifolds. Trans. Am. Math. Soc. 253, 329 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Bonavolonta, G., Poncin, N.: On the category of Lie n-algebroids. J. Geom. Phys. 73, 70–90 (2013). arXiv:1207.3590 [math.DG]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Voronov, T. (ed.) Quantization, Poisson Brackets and Beyond. Contemp. Math., vol. 315. American Mathematical Society, Providence (2002). arXiv:math.SG/0203110 Google Scholar
  48. 48.
    Roytenberg, D.: On weak Lie 2-algebras. In: XXVI Workshop on Geometrical Methods in Physics 2007, Kielanowski, P., et al. (eds.), AIP Conference Proceedings, vol. 956. American Institute of Physics, Melville, NY arXiv:0712.3461 [math.QA]
  49. 49.
    Baez, J., Crans, A.S.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492 (2004). arXiv:math.QA/0307263 MathSciNetzbMATHGoogle Scholar
  50. 50.
    Mehta, R., Zambon, M.: \(L_\infty \)-algebra actions. Differ. Geom. App. 30, 576 (2012). arXiv:1202.2607 [math.DG]MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Fiorenza, D., Manetti, M.: \(L_\infty \) structures on mapping cones. Algebra Number Theory 1, 301 (2007). arXiv:math.QA/0601312 MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Getzler, E.: Higher derived brackets. arXiv:1010.5859 [math-ph]
  53. 53.
    Ritter, P., Saemann, C.: Automorphisms of strong homotopy Lie algebras of local observables. arXiv:1507.00972 [hep-th]
  54. 54.
    Baez, J.C., Hoffnung, A.E., Rogers, C.L.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293, 701 (2010). arXiv:0808.0246 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Vinogradov, A.M.: The union of the Schouten and Nijenhuis brackets, cohomology, and superdifferential operators. Mat. Zametki 47, 138 (1990)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Gruetzmann, M., Strobl, T.: General Yang–Mills type gauge theories for p-form gauge fields: from physics-based ideas to a mathematical framework OR From Bianchi identities to twisted Courant algebroids. Int. J. Geom. Methods Mod. Phys. 12, 1550009 (2014). arXiv:1407.6759 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Severa, P., Weinstein, A.: Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144, 145 (2001). arXiv:math.SG/0107133 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Severa, P.: Letter No. 5 to Alan Weinstein (1998).
  59. 59.
    Bressler, P., Chervov, A.: Courant algebroids. J. Math. Sci. 128, 3030 (2005). arXiv:hep-th/0212195 MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Roytenberg, D.: Quasi-Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61, 123 (2002). arXiv:math/0112152 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc. 54, 403 (1996). arXiv:dg-ga/9407015 MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Murray, M.K.: An introduction to bundle gerbes. In: Garcia-Prada, O., Bourguignon, J.-P., Salamon, S. (eds.) The Many Facets of Geometry: A Tribute to Nigel Hitchin. Oxford University Press, Oxford (2010). arXiv:0712.1651 [math.DG]Google Scholar
  63. 63.
    Rogers, C.L.: 2-plectic geometry, Courant algebroids, and categorified prequantization. J. Symp. Geom. 11, 53 (2013). arXiv:1009.2975 [math-ph]MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Fiorenza, D., Rogers, C.L., Schreiber, U.: \(L_\infty \)-algebras of local observables from higher prequantum bundles. Homol. Homot. Appl. 16, 107 (2014). arXiv:1304.6292 [math-ph]MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Kosmann-Schwarzbach, Y.: From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier 46, 1243 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Hull, C.M.: Generalised geometry for M-theory. JHEP 0707, 079 (2007). arXiv:hep-th/0701203 ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Berman, D.S., Godazgar, H., Perry, M.J.: \(SO(5,5)\) duality in M-theory and generalized geometry. Phys. Lett. B 700, 65 (2011). arXiv:1103.5733 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    Hohm, O., Hull, C., Zwiebach, B.: Background independent action for double field theory. JHEP 1007, 016 (2010). arXiv:1003.5027 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Bouwknegt, P., Jurco, B.: AKSZ construction of topological open \(p\)-brane action and Nambu brackets. Rev. Math. Phys. 25, 1330004 (2013). arXiv:1110.0134 [math-ph]MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Getzler, E.: Lie theory for nilpotent \(L_\infty \)-algebras. Ann. Math. 170, 271 (2009). arXiv:math.AT/0404003 MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Henriques, A.: Integrating \(L_\infty \)-algebras. Comput. Math. 144, 1017 (2008). arXiv:math.CT/0603563 MathSciNetzbMATHGoogle Scholar
  72. 72.
    Ševera, P., Širaň, M.: Integration of differential graded manifolds. arXiv:1506.04898 [math.DG]
  73. 73.
    Hohm, O., Zwiebach, B.: Large gauge transformations in double field theory. JHEP 1302, 075 (2013). arXiv:1207.4198 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Bouwknegt, P., Evslin, J., Mathai, V.: T-Duality: topology change from H-flux. Commun. Math. Phys. 249, 383 (2004). arXiv:hep-th/0306062 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Kachru, S., Schulz, M.B., Tripathy, P.K., Trivedi, S.P.: New supersymmetric string compactifications. JHEP 0303, 61 (2003). arXiv:hep-th/0211182 ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    Mathai, V., Rosenberg, J.: T-duality for torus bundles via noncommutative topology. Commun. Math. Phys 253, 705 (2004). arXiv:hep-th/0401168 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Li-Bland, D., Severa, P.: Integration of exact Courant algebroids. ERAMS 19, 58 (2012). arXiv:1101.3996 [math.DG]MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikHannoverGermany
  2. 2.Istituto Nationale di Fisica NucleareTurinItaly
  3. 3.Department of MathematicsHeriot-Watt UniversityEdinburghUK
  4. 4.Maxwell Institute for Mathematical SciencesEdinburghUK
  5. 5.Higgs Centre for Theoretical PhysicsEdinburghUK

Personalised recommendations