Annales Henri Poincaré

, Volume 19, Issue 7, pp 2069–2086 | Cite as

Ruled Strips with Asymptotically Diverging Twisting

  • David KrejčiříkEmail author
  • Rafael Tiedra de Aldecoa


We consider the Dirichlet Laplacian in a two-dimensional strip composed of segments translated along a straight line with respect to a rotation angle with velocity diverging at infinity. We show that this model exhibits a “raise of dimension” at infinity leading to an essential spectrum determined by an asymptotic three-dimensional tube of annular cross section. If the cross section of the asymptotic tube is a disc, we also prove the existence of discrete eigenvalues below the essential spectrum.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carron, G., Exner, P., Krejčiřík, D.: Topologically nontrivial quantum layers. J. Math. Phys. 45, 774–784 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chenaud, B., Duclos, P., Freitas, P., Krejčiřík, D.: Geometrically induced discrete spectrum in curved tubes. Differ. Geom. Appl. 23(2), 95–105 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Donnelly, H.: On the essential spectrum of a complete Riemannian manifold. Topology 20(1), 1–14 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7, 73–102 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duclos, P., Exner, P., Krejčiřík, D.: Bound states in curved quantum layers. Commun. Math. Phys. 223, 13–28 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ekholm, T., Kovařík, H., Krejčiřík, D.: A Hardy inequality in twisted waveguides. Arch. Ration. Mech. Anal. 188, 245–264 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Freitas, P., Krejčiřík, D.: Location of the nodal set for thin curved tubes. Indiana Univ. Math. J. 57(1), 343–376 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Haag, S., Lampart, J., Teufel, S.: Generalised quantum waveguides. Ann. Henri Poincaré 16, 2535–2568 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Klingenberg, W.: A course in differential geometry. Springer, New York (1978)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kolb, M., Krejčiřík, D.: The Brownian traveller on manifolds. J. Spectr. Theory 4, 235–281 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Krejčiřík, D.: Quantum strips on surfaces. J. Geom. Phys. 45(1–2), 203–217 (2003)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Krejčiřík, D.: Hardy inequalities in strips on ruled surfaces. J. Inequal. Appl. 2006, 46409 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Krejčiřík, D.: Twisting versus bending in quantum waveguides. Analysis on Graphs and its Applications, Cambridge, 2007. In: Exner, P. et al. (ed.), Proceedings of the Symposium on Pure Mathematics, vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 617–636. arXiv:0712.3371v2 (math–ph) (2009) for a corrected version
  14. 14.
    Krejčiřík, D.: Waveguides with asymptotically diverging twisting. Appl. Math. Lett. 46, 7–10 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Krejčiřík, D., Tiedra de Aldecoa, R.: The nature of the essential spectrum in curved quantum waveguides. J. Phys. A 37(20), 5449–5466 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Krejčiřík, D., Lu, Z.: Location of the essential spectrum in curved quantum layers. J. Math. Phys. 55, 083520 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Krejčiřík, D., Zuazua, E.: The Hardy inequality and the heat equation in twisted tubes. J. Math. Pures Appl. 94, 277–303 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lampart, J., Teufel, S.: The adiabatic limit of Schrödinger operators on fibre bundles. Math. Anal. 367, 1647–1683 (2017)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lin, Ch., Lu, Z.: On the discrete spectrum of generalized quantum tubes. Commun. Partial Differ. Equ. 31, 1529–1546 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lin, Ch., Lu, Z.: Existence of bound states for layers built over hypersurfaces in \(\mathbb{R}^{n+1}\). J. Funct. Anal. 244, 1–25 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lin, Ch., Lu, Z.: Quantum layers over surfaces ruled outside a compact set. J. Math. Phys. 48, 053522 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lu, Z., Rowlett, J.: On the discrete spectrum of quantum layers. J. Math. Phys. 53, 073519 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 2Czech Republic
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiago de ChileChile

Personalised recommendations