Space-Time Analytic Smoothing Effect for Global Solutions to a System of Nonlinear Schrödinger Equations with Large Data

Article
  • 8 Downloads

Abstract

We study the Cauchy problem for a quadratic system of nonlinear Schrödinger equations in \(L^2\)-setting with the space dimension \(n=1,2\) or 3. Recently, the author showed that the local solution for the system of nonlinear Schrödinger equations has space-time analytic smoothing effect for data with exponentially weighted \(L^2\)-norm. Also as is well known, the quadratic nonlinear Schrödinger equations have global solutions in \(L^2\)-subcritical setting. Our main purpose of this study is to show real analyticity in both space and time variables of the unique global solution with data which has large exponentially weighted \(L^2\)-norm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Amer. Math. Soc., Providence (2003)MATHGoogle Scholar
  2. 2.
    Colin, M., Colin, T., Ohta, M.: Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2211–2226 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    de Bouard, A.: Analytic solution to non elliptic non linear Schrödinger equations. J. Differ. Equ. 104, 196–213 (1993)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Ginibre, J., Velo, G.: On a class of nonlinear Schrodinger equations. I: The Cauchy problem. J. Funct. Anal. 32, 1–32 (1979)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hayashi, N., Kato, K.: Analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations. Commun. Math. Phys. 184, 273–300 (1997)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Hayashi, N., Li, C., Naumkin, P.I.: On a system of nonlinear Schrödinger equations in 2d. Differ. Int. Equ. 24, 417–434 (2011)MATHGoogle Scholar
  7. 7.
    Hayashi, N., Li, C., Naumkin, P.I.: Modified wave operator for a system of nonlinear Schrödinger equations in 2d. Commun. Partial Differ. Equ. 37, 947–968 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Hayashi, N., Li, C., Ozawa, T.: Small data scattering for a system of nonlinear Schrödinger equations. Differ. Equ. Appl. 3, 415–426 (2011)MathSciNetMATHGoogle Scholar
  9. 9.
    Hayashi, N., Ozawa, T., Tanaka, K.: On a system of nonlinear Schrödinger equations with quadratic interaction. Ann. Inst. Henri Poincaré-AN 30, 661–690 (2013)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Hayashi, N., Saitoh, S.: Analyticity and smoothing effect for the Schrödinger equation. Ann. Inst. Henri Poincaré, Phys. Théor 52, 163–173 (1990)MathSciNetMATHGoogle Scholar
  11. 11.
    Hayashi, N., Saitoh, S.: Analyticity and global existence of small solutions to some nonlinear Schrödinger equations. Commun. Math. Phys. 129, 27–41 (1990)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Hoshino, G.: Analytic smoothing effect for global solutions to a system of nonlinear Schrödinger equations. Nonlinear Differ. Equ. Appl. 24, 62 (2017)CrossRefMATHGoogle Scholar
  13. 13.
    Hoshino, G.: Space-time analytic smoothing effect for a system of nonlinear Schrödinger equations with non pseudo-conformally invariant interactions. Commun. Partial Differ. Equ. 42, 802–819 (2017)CrossRefMATHGoogle Scholar
  14. 14.
    Hoshino, G., Ozawa, T.: Analytic smoothing effect for a system of nonlinear Schrödinger equations. Differ. Equ. Appl. 5, 395–408 (2013)MathSciNetMATHGoogle Scholar
  15. 15.
    Hoshino, G., Ozawa, T.: Analytic smoothing effect for nonlinear Schrödinger equations with quintic nonlinearity. J. Math. Anal. Appl. 419, 285–297 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hoshino, G., Ozawa, T.: Analytic smoothing effect for a system of Schrödinger equations with two wave interaction. Adv. Differ. Equ. 20, 697–716 (2015)MATHGoogle Scholar
  17. 17.
    Hoshino, G., Ozawa, T.: Space-time analytic smoothing effect for the pseudo-conformally invariant Schrödinger equations. Nonlinear Differ. Equ. Appl. 23, 3 (2016)CrossRefMATHGoogle Scholar
  18. 18.
    Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Phys. Théor 46, 113–129 (1987)MathSciNetMATHGoogle Scholar
  19. 19.
    Kato, T., Masuda, K.: Nonlinear evolution equations and analyticity. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 455–467 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Nakamitsu, K.: Analytic finite energy solutions of the nonlinear Schrödinger equation. Commun. Math. Phys. 260, 117–130 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ogawa, T., Uriya, K.: Final state problem for a quadratic nonlinear Schrödinger system in two space dimensions with mass resonance. J. Differ. Equ. 258, 483–583 (2015)ADSCrossRefMATHGoogle Scholar
  22. 22.
    Ozawa, T.: Remarks on proofs of conservation laws for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 25, 403–408 (2006)CrossRefMATHGoogle Scholar
  23. 23.
    Ozawa, T., Sunagawa, H.: Small data blow-up for a system of nonlinear Schrödinger equations. J. Math. Anal. Appl. 399, 147–155 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ozawa, T., Yamauchi, K.: Remarks on analytic smoothing effect for the Schrödinger equation. Math. Z. 261, 511–524 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ozawa, T., Yamauchi, K.: Analytic smoothing effect for global solutions to nonlinear Schrödinger equation. J. Math. Anal. Appl. 364, 492–497 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Sasaki, H.: Small analytic solutions to the Hartree equation. J. Funct. Anal. 270, 1064–1090 (2016)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Appl. Math. Sci., vol. 139. Springer, Berlin (1999)MATHGoogle Scholar
  28. 28.
    Tsutsumi, Y.: \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkc. Ekvac. 30, 115–125 (1987)MATHGoogle Scholar
  29. 29.
    Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)ADSCrossRefMATHGoogle Scholar
  30. 30.
    Yan, K., Yin, Z.: Analytic solutions of the Cauchy problem for two-component shallow water systems. Math. Z. 269, 1113–1127 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Osaka UniversityToyonakaJapan

Personalised recommendations