Advertisement

Annales Henri Poincaré

, Volume 19, Issue 4, pp 1167–1214 | Cite as

The Dirac–Frenkel Principle for Reduced Density Matrices, and the Bogoliubov–de Gennes Equations

  • Niels BenedikterEmail author
  • Jérémy Sok
  • Jan Philip Solovej
Open Access
Article

Abstract

The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities.

Notes

Acknowledgements

Open access funding provided by Institute of Science and Technology (IST Austria). The authors acknowledge support by ERC Advanced Grant 321029 and by VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). The authors would like to thank Sébastien Breteaux, Enno Lenzmann, Mathieu Lewin and Jochen Schmid for comments and discussions about well-posedness of the Bogoliubov–de Gennes equations.

References

  1. 1.
    Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193–1220 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anapolitanos, I.: Rate of convergence towards the Hartree–von Neumann limit in the mean-field regime. Lett. Math. Phys. 98(1), 1–31 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bach, V., Breteaux, S., Chen, T., Fröhlich, J., Sigal, I.M.: The time-dependent Hartree–Fock–Bogoliubov equations for Bosons. arXiv:1602.05171 (2016)
  4. 4.
    Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree–Fock approximation with Coulomb interaction. J. Math. Pures Appl. (9) 105(1), 1–30 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Mean field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bardos, C., Golse, F., Mauser, N.J.: Weak coupling limit of the \(N\)-particle Schrödinger equation. Methods Appl. Anal. 7(2), 275–293 (2000)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benedikter, N., Jakšić, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math. 69(12), 2250–2303 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Benedikter, N., Porta, M., Schlein, B.: Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55(2), 021901 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331(3), 1087–1131 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Boccato, C., Cenatiempo, S., Schlein, B.: Quantum many-body fluctuations around nonlinear Schrödinger dynamics. Ann. Henri Poincaré 18(1), 113–191 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bove, A., Da Prato, G., Fano, G.: An existence proof for the Hartree–Fock time-dependent problem with bounded two-body interaction. Commun. Math. Phys. 37, 183–191 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bove, A., Da Prato, G., Fano, G.: On the Hartree–Fock time-dependent problem. Commun. Math. Phys. 49(1), 25–33 (1976)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Chadam, J.M.: The time-dependent Hartree–Fock equations with Coulomb two-body interaction. Commun. Math. Phys. 46(2), 99–104 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chadam, J.M., Glassey, R.T.: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys. 16, 1122–1130 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, L., Lee, J.O., Schlein, B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144(4), 872–903 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, L., Sigal, I.M.: On the Bogolubov–de Gennes Equations. arXiv:1701.06080 (2017)
  18. 18.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. International Series of Monographs on Physics 27. Clarendon Press (1981)Google Scholar
  19. 19.
    Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory. Pure and Applied Mathematics. Interscience Publishers, New York (1958)zbMATHGoogle Scholar
  20. 20.
    Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179(2), 265–283 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Erdős, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Frenkel, J.I.: Wave Mechanics: Advanced General Theory. Clarendon Press, Oxford (1934)zbMATHGoogle Scholar
  28. 28.
    Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288, 1023–1059 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Griesemer, M.: On the dynamics of polarons in the strong-coupling limit. arXiv:1612.00395 (2016)
  31. 31.
    Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting Bosons, I. Commun. Math. Phys. 324(2), 601–636 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting Bosons, II. Commun. Partial Differ. Equ. 42(1), 24–67 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting Bosons, I. Commun. Math. Phys. 294(1), 273 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting Bosons, II. Adv. Math. 228(3), 1788–1815 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Grümm, H.R.: Two theorems about \(\fancyscript {C}_p\). Rep. Math. Phys. 4(3), 211–215 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hainzl, C., Lenzmann, E., Lewin, M., Schlein, B.: On blowup for time-dependent generalized Hartree–Fock equations. Ann. Henri Poincaré 11, 1023–1052 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hainzl, C., Schlein, B.: Dynamics of Bose–Einstein condensates of fermion pairs in the low density limit of BCS theory. J. Funct. Anal. 265(3), 399–423 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Isozaki, H.: On the existence of solutions of time-dependent Hartree–Fock equations. Publ. Res. Inst. Math. Sci. 19(1), 107–115 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Kirkpatrick, K., Schlein, B., Staffilani, G.: Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics. Am. J. Math. 133(1), 91–130 (2011)CrossRefzbMATHGoogle Scholar
  40. 40.
    Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lenzmann, E., Lewin, M.: Minimizers for the Hartree–Fock–Bogoliubov theory of neutron stars and white dwarfs. Duke Math. J. 152(2), 257–315 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Zurich Lectures in Advanced Mathematics. European Mathematical Society (2008)Google Scholar
  43. 43.
    Nam, P.T., Napiórkowski, M.: Bogoliubov correction to the mean-field dynamics of interacting bosons. arXiv:1509.04631 (2015)
  44. 44.
    Narnhofer, H., Sewell, G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Petrat, S.: Hartree–Fock Corrections in a Mean-field Limit for Fermions. arXiv:1609.04754 (2016)
  46. 46.
    Petrat, S., Pickl, P.: A new method and a new scaling for deriving fermionic mean-field dynamics. Math. Phys. Anal. Geom. 19(1), Art. 3, 51 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140(1), 76–89 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27(1), 1550003 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Porta, M., Rademacher, S., Saffirio, C., and Schlein, B.: Mean field evolution of fermions with Coulomb interaction. arXiv:1608.05268 (2016)
  51. 51.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, London (1975)zbMATHGoogle Scholar
  52. 52.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Revised and Enlarged Edition. Elsevier Science, Amsterdam (1981)Google Scholar
  53. 53.
    Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Schmid, J., Griesemer, M.: Kato’s theorem on the integration of non-autonomous linear evolution equations. Math. Phys. Anal. Geom. 17(3), 9154 (2014)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Segal, I.: Non-linear semi-groups. Ann. Math. 2(78), 339–364 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Sohinger, V.: A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on \(\mathbb{T}^3\) from the dynamics of many-body quantum systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(6), 1337–1365 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Solovej, J.P.: Many-Body Quantum Mechanics. Lecture Notes ESI Vienna, http://www.math.ku.dk/~solovej/MANYBODY/ (2014)
  58. 58.
    Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.Department of Mathematics and Computer ScienceUniversity of BaselBaselSwitzerland
  3. 3.QMath, Department of Mathematical SciencesUniversity of CopenhagenKøbenhavn ØDenmark

Personalised recommendations