Annales Henri Poincaré

, Volume 19, Issue 3, pp 775–842 | Cite as

Wall Crossing Invariants from Spectral Networks

  • Pietro Longhi
Open Access


A new construction of BPS monodromies for 4d \({\mathcal {N}}=2\) theories of class \({\mathcal {S}}\) is introduced. A novel feature of this construction is its manifest invariance under Kontsevich–Soibelman wall crossing, in the sense that no information on the 4d BPS spectrum is employed. The BPS monodromy is encoded by topological data of a finite graph, embedded into the UV curve C of the theory. The graph arises from a degenerate limit of spectral networks, constructed at maximal intersections of walls of marginal stability in the Coulomb branch of the gauge theory. The topology of the graph, together with a notion of framing, encode equations that determine the monodromy. We develop an algorithmic technique for solving the equations and compute the monodromy in several examples. The graph manifestly encodes the symmetries of the monodromy, providing some support for conjectural relations to specializations of the superconformal index. For \(A_1\)-type theories, the graphs encoding the monodromy are “dessins d’enfants” on C, the corresponding Strebel differentials coincide with the quadratic differentials that characterize the Seiberg–Witten curve.


  1. 1.
    Cecotti, S., Vafa, C.: On classification of \({\cal{N}}=2\) supersymmetric theories. Commun. Math. Phys. 158, 569–644 (1993). [arXiv:hep-th/9211097]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arxiv: 0811.2435
  3. 3.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). [arXiv:0807.4723]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. arxiv: 0907.3987
  5. 5.
    Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: \({\cal{N}}=2\) quantum field theories and their BPS quivers. Adv. Theor. Math. Phys. 18, 27–127 (2014). [arXiv:1112.3984]MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cecotti, S., Vafa, C.: 2d Wall-crossing, R-twisting, and a supersymmetric index. arxiv: 1002.3638
  7. 7.
    Cecotti, S., Neitzke, A., Vafa, C.: R-twisting and 4d/2d correspondences. arxiv: 1006.3435
  8. 8.
    Iqbal, A., Vafa, C.: BPS degeneracies and superconformal index in diverse dimensions. Phys. Rev. D 90, 105031 (2014). [arXiv:1210.3605]ADSCrossRefGoogle Scholar
  9. 9.
    Cordova, C., Shao, S.-H.: Schur indices, BPS particles, and Argyres–Douglas theories. JHEP 01, 040 (2016). [arXiv:1506.00265]ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Cordova, C., Gaiotto, D., Shao, S.-H.: Infrared computations of defect schur indices. arxiv: 1606.08429
  11. 11.
    Cecotti, S., Song, J., Vafa, C., Yan, W.: Superconformal index, BPS Monodromy and Chiral Algebras. arxiv: 1511.01516
  12. 12.
    Gabella, M., Longhi, P., Park, C.Y., Yamazaki, M.: BPS graphs: from spectral networks to BPS quivers. arxiv: 1704.04204
  13. 13.
    Hollands, L., Neitzke, A.: Spectral networks and Fenchel–Nielsen coordinates. Lett. Math. Phys. 106, 811–877 (2016). [arXiv:1312.2979]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks. Ann. Henri Poincaré 14, 1643–1731 (2013). [arXiv:1204.4824]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Galakhov, D., Longhi, P., Moore, G.W.: Spectral networks with spin. Commun. Math. Phys. 340, 171–232 (2015). [arXiv:1408.0207]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Longhi, P., Park, C.Y.: ADE spectral networks. JHEP 08, 087 (2016). [arXiv:1601.02633]ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Mulase, M., Penkava, M.: Ribbon graphs, quadratic differentials on riemann surfaces, and algebraic curves defined over \(\bar{Q}\). ArXiv Mathematical Physics e-prints (November 1998) [arxiv: math-ph/9811024]
  18. 18.
    Ashok, S.K., Cachazo, F., Dell’Aquila, E.: Strebel differentials with integral lengths and Argyres–Douglas singularities. arxiv: hep-th/0610080
  19. 19.
    Ashok, S.K., Cachazo, F., Dell’Aquila, E.: Children’s drawings from Seiberg–Witten curves. Commun. Num. Theor. Phys. 1, 237–305 (2007). arXiv:hep-th/0611082 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    He, Y.-H., Read, J.: Dessins denfants in \( {\cal{N}} =2 \) generalised quiver theories. JHEP 08, 085 (2015). [arXiv:1503.06418]ADSCrossRefGoogle Scholar
  21. 21.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing in coupled 2d–4d systems. arxiv: 1103.2598
  22. 22.
    Longhi, P., Park, C.Y.: ADE spectral networks and decoupling limits of surface defects. arxiv: 1611.09409
  23. 23.
    Gaiotto, D., Rastelli, L., Razamat, S.S.: Bootstrapping the superconformal index with surface defects. JHEP 01, 022 (2013). [arXiv:1207.3577]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Longhi, P.: QU: a software for computing 2d–4d soliton generating functions from critical graphs. Available with the arxiv files of this paper arxiv: 1611.00150
  25. 25.
    Galakhov, D., Longhi, P., Mainiero, T., Moore, G.W., Neitzke, A.: Wild wall crossing and BPS giants. JHEP 1311, 046 (2013). [arXiv:1305.5454]ADSCrossRefGoogle Scholar
  26. 26.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. Adv. Theor. Math. Phys. 17, 241–397 (2013). [arXiv:1006.0146]MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Dimofte, T., Gukov, S.: Refined, motivic, and quantum. Lett. Math. Phys. 91, 1 (2010). [arXiv:0904.1420]MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dimofte, T., Gukov, S., Soibelman, Y.: Quantum wall crossing in \({\cal{N}}=2\) gauge theories. Lett. Math. Phys. 95, 1–25 (2011). [arXiv:0912.1346]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Longhi, P.: The BPS spectrum generator in 2d–4d systems. JHEP 11, 107 (2012). [arXiv:1205.2512]ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Moore, G.W.: Felix Klein Lectures. (2012)
  31. 31.
    Hanany, A., Hori, K.: Branes and \({\cal{N}}=2\) theories in two dimensions. Nucl. Phys. B 513, 119–174 (1998). [arXiv:hep-th/9707192]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gaiotto, D., Gukov, S., Seiberg, N.: Surface defects and resolvents. JHEP 09, 070 (2013). [arXiv:1307.2578]ADSCrossRefGoogle Scholar
  33. 33.
    Gaiotto, D.: \({\cal{N}}=2\) dualities. JHEP 08, 034 (2012). [arXiv:0904.2715]ADSCrossRefGoogle Scholar
  34. 34.
    Gaiotto, D.: Surface operators in \({\cal{N}}=2\) 4d gauge theories. JHEP 11, 090 (2012). [arXiv:0911.1316]ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in \({\cal{N}}=2\) gauge theory and Liouville modular geometry. JHEP 01, 113 (2010). [arXiv:0909.0945]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hori, K., Park, C.Y., Tachikawa, Y.: 2d SCFTs from M2-branes. JHEP 1311, 147 (2013). [arXiv:1309.3036]ADSCrossRefGoogle Scholar
  37. 37.
    Gadde, A., Gukov, S.: 2d Index and Surface operators. JHEP 03, 080 (2014). [arXiv:1305.0266]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Witten, E., Olive, D.I.: Supersymmetry algebras that include topological charges. Phys. Lett. B 78, 97–101 (1978)ADSCrossRefGoogle Scholar
  39. 39.
    Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \({\cal{N}}=2\) supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). [arXiv:hep-th/9407087]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in \({\cal{N}}=2\) supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). [arXiv:hep-th/9408099]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Argyres, P.C., Plesser, M.R., Seiberg, N., Witten, E.: New \({\cal{N}}=2\) superconformal field theories in four-dimensions. Nucl. Phys. B 461, 71–84 (1996). arXiv:hep-th/9511154 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Minahan, J.A., Nemeschansky, D.: An \({\cal{N}}=2\) superconformal fixed point with E(6) global symmetry. Nucl. Phys. B 482, 142–152 (1996). [arXiv:hep-th/9608047]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Minahan, J.A., Nemeschansky, D.: Superconformal fixed points with E(n) global symmetry. Nucl. Phys. B 489, 24–46 (1997). [arXiv:hep-th/9610076]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Argyres, P., Lotito, M., Lü, Y., Martone, M.: Geometric constraints on the space of \({\cal{N}}=2\) SCFTs I: physical constraints on relevant deformations. arxiv: 1505.04814
  45. 45.
    Argyres, P.C., Douglas, M.R.: New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B 448, 93–126 (1995). [arXiv:hep-th/9505062]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Bilal, A., Ferrari, F.: Curves of marginal stability, and weak and strong coupling BPS spectra in \({\cal{N}}=2\) supersymmetric QCD. Nucl. Phys. B 480, 589–622 (1996). [arXiv:hep-th/9605101]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Denef, F., Moore, G.W.: Split states, entropy enigmas, holes and halos. JHEP 11, 129 (2011). [arXiv:hep-th/0702146]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Andriyash, E., Denef, F., Jafferis, D.L., Moore, G.W.: Wall-crossing from supersymmetric galaxies. JHEP 01, 115 (2012). [arXiv:1008.0030]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Manschot, J., Pioline, B., Sen, A.: Wall crossing from Boltzmann black hole halos. JHEP 07, 059 (2011). [arXiv:1011.1258]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Hollands, L., Neitzke, A.: BPS states in the Minahan–Nemeschansky E6 theory. arxiv: 1607.01743
  51. 51.
    Gabella, M.: Quantum holonomies from spectral networks and framed BPS states. arxiv: 1603.05258
  52. 52.
  53. 53.
    Xie, D.: General Argyres–Douglas theory. JHEP 01, 100 (2013). [arXiv:1204.2270]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Longhi, P.: The Structure of BPS Spectra. Ph.D. Thesis. Rutgers University Library (2015)Google Scholar
  55. 55.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks and snakes. Ann. Henri Poincaré 15, 61–141 (2014). [arXiv:1209.0866]MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Cecotti, S., Vafa, C.: Classification of complete \({\cal{N}}=2\) supersymmetric theories in 4 dimensions. Surv. Differ. Geom. 18 (2013) [arxiv: 1103.5832]
  57. 57.
    Tong, D., Wong, K.: Monopoles and Wilson lines. JHEP 06, 048 (2014). [arXiv:1401.6167]ADSCrossRefGoogle Scholar
  58. 58.
    Moore, G.W., Royston, A.B., Van den Bleeken, D.: Semiclassical framed BPS states. JHEP 07, 071 (2016). [arXiv:1512.08924]ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Moore, G.W., Royston, A.B., Van den Bleeken, D.: \(L^2\)-Kernels of dirac-type operators on monopole moduli spaces. arxiv: 1512.08923
  60. 60.
    Moore, G.W., Royston, A.B., Van den Bleeken, D.: Parameter counting for singular monopoles on \({\mathbb{R}}^{3}\). JHEP 10, 142 (2014). [arXiv:1404.5616]ADSCrossRefzbMATHGoogle Scholar
  61. 61.
    Moore, G.W., Royston, A.B., Van den Bleeken, D.: Brane bending and monopole moduli. JHEP 10, 157 (2014). [arXiv:1404.7158]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Brennan, T.D., Moore, G.W.: A note on the semiclassical formulation of BPS states in four-dimensional \({\cal{N}}=2\) theories. arxiv: 1610.00697
  63. 63.
    Cecotti, S., Del Zotto, M.: Galois covers of \({\cal{N}}=2\) BPS spectra and quantum monodromy. arxiv: 1503.07485

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations